import os import urllib.request from collections import OrderedDict from html import escape import pandas as pd import numpy as np import torch import torchvision.transforms as transforms from transformers import CLIPProcessor, CLIPModel import tokenizers import regex import streamlit as st import models from tokenizer import SimpleTokenizer cuda_available = torch.cuda.is_available() model_url = "https://dl.fbaipublicfiles.com/slip/slip_large_100ep.pt" model_filename = "slip_large_100ep.pt" def get_model(model): if isinstance(model, torch.nn.DataParallel) or isinstance( model, torch.nn.parallel.DistributedDataParallel ): return model.module else: return model @st.cache( show_spinner=False, hash_funcs={ CLIPModel: lambda _: None, CLIPProcessor: lambda _: None, dict: lambda _: None, }, ) def load(): # Load SLIP model from Facebook AI Research if model_filename not in os.listdir(): urllib.request.urlretrieve(model_url, model_filename) ckpt = torch.load("slip_large_100ep.pt", map_location="cpu") state_dict = OrderedDict() for k, v in ckpt["state_dict"].items(): state_dict[k.replace("module.", "")] = v old_args = ckpt["args"] slip_model = getattr(models, "SLIP_VITL16")( rand_embed=False, ssl_mlp_dim=old_args.ssl_mlp_dim, ssl_emb_dim=old_args.ssl_emb_dim, ) if cuda_available: slip_model.cuda() slip_model.load_state_dict(state_dict, strict=True) slip_model = get_model(slip_model) tokenizer = SimpleTokenizer() del ckpt del state_dict # Load CLIP model from HuggingFace model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") # Load images' descriptions and embeddings df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")} embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")} slip_embeddings = { 0: np.load("embeddings_slip_large.npy"), 1: np.load("embeddings2_slip_large.npy"), } for k in [0, 1]: embeddings[k] = np.divide( embeddings[k], np.sqrt(np.sum(embeddings[k] ** 2, axis=1, keepdims=True)) ) return model, processor, slip_model, tokenizer, df, embeddings, slip_embeddings model, processor, slip_model, tokenizer, df, embeddings, slip_embeddings = load() source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"} def get_html(url_list, url_list_slip, height=150): html = "
" html += "" html += "
CLIP (Arxiv, GitHub) from OpenAI
" for url, title, link in url_list: html2 = f"" if len(link) > 0: html2 = f"" + html2 + "" html = html + html2 html += "
" html += "" html += "
SLIP (Arxiv, GitHub) from Meta AI
" for url, title, link in url_list_slip: html2 = f"" if len(link) > 0: html2 = f"" + html2 + "" html = html + html2 html += "
" return html def compute_text_embeddings(list_of_strings): inputs = processor(text=list_of_strings, return_tensors="pt", padding=True) return model.get_text_features(**inputs) def compute_text_embeddings_slip(list_of_strings): texts = tokenizer(list_of_strings) if cuda_available: texts = texts.cuda(non_blocking=True) texts = texts.view(-1, 77).contiguous() return slip_model.encode_text(texts) def image_search(query, corpus, n_results=24): text_embeddings = compute_text_embeddings([query]).detach().numpy() text_embeddings_slip = compute_text_embeddings_slip([query]).detach().numpy() k = 0 if corpus == "Unsplash" else 1 results = np.argsort((embeddings[k] @ text_embeddings.T)[:, 0])[ -1 : -n_results - 1 : -1 ] results_slip = np.argsort((slip_embeddings[k] @ text_embeddings_slip.T)[:, 0])[ -1 : -n_results - 1 : -1 ] return ( [ ( df[k].iloc[i]["path"], df[k].iloc[i]["tooltip"] + source[k], df[k].iloc[i]["link"], ) for i in results ], [ ( df[k].iloc[i]["path"], df[k].iloc[i]["tooltip"] + source[k], df[k].iloc[i]["link"], ) for i in results_slip ], ) description = """ # Comparing CLIP and SLIP side by side **Enter your query and hit enter** CLIP and SLIP are ML models that encode images and texts as vectors so that the vectors of an image and its caption are similar. They can notably be used for zero-shot image classification, text-based image retrieval or image generation. *Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model, Meta AI's [SLIP](https://github.com/facebookresearch/SLIP) model, 🤗 Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)* """ st.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.markdown(description) _, c, _ = st.columns((1, 3, 1)) query = c.text_input("", value="clouds at sunset") corpus = st.radio("", ["Unsplash", "Movies"]) if len(query) > 0: results, results_slip = image_search(query, corpus) st.markdown(get_html(results, results_slip), unsafe_allow_html=True)