Spaces:
Runtime error
Runtime error
File size: 6,874 Bytes
b57c4d6 03236d3 b57c4d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import numpy as np
from PIL import ImageDraw, Image, ImageFont
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import streamlit as st
FONTS = [
"Font: Serif - EBGaramond",
"Font: Serif - Cinzel",
"Font: Sans - Roboto",
"Font: Sans - Lato",
"Font: Display - Lobster",
"Font: Display - LilitaOne",
"Font: Handwriting - GreatVibes",
"Font: Handwriting - Pacifico",
"Font: Mono - Inconsolata",
"Font: Mono - Cutive",
]
def hex_to_rgb(hex):
rgb = []
for i in (0, 2, 4):
decimal = int(hex[i : i + 2], 16)
rgb.append(decimal)
return tuple(rgb)
@st.cache(allow_output_mutation=True)
def load():
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
return model, feature_extractor
model, feature_extractor = load()
def compute_depth(image):
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
return prediction.cpu().numpy()[0, 0, :, :]
def get_mask1(
shape, x, y, caption, font=None, font_size=0.08, color=(0, 0, 0), alpha=0.8
):
img_text = Image.new("RGBA", (shape[1], shape[0]), (0, 0, 0, 0))
draw = ImageDraw.Draw(img_text)
font = ImageFont.truetype(font, int(font_size * shape[1]))
draw.text(
(x * shape[1], (1 - y) * shape[0]),
caption,
fill=(*color, int(max(min(1, alpha), 0) * 255)),
font=font,
)
text = np.array(img_text)
mask1 = np.dot(np.expand_dims(text[:, :, -1] / 255, -1), np.ones((1, 3)))
return text[:, :, :-1], mask1
def get_mask2(depth_map, depth):
return np.expand_dims(
(depth_map[:, :] < depth * np.min(depth_map) + (1 - depth) * np.max(depth_map)),
-1,
)
def add_caption(
img,
caption,
depth_map=None,
x=0.5,
y=0.5,
depth=0.5,
font_size=50,
color=(255, 255, 255),
font="",
alpha=1,
):
text, mask1 = get_mask1(
img.shape,
x,
y,
caption,
font=font,
font_size=font_size,
color=color,
alpha=alpha,
)
mask2 = get_mask2(depth_map, depth)
mask = mask1 * np.dot(mask2, np.ones((1, 3)))
return ((1 - mask) * img + mask * text).astype(np.uint8)
@st.cache(max_entries=30, show_spinner=False)
def load_img(uploaded_file):
if uploaded_file is None:
img = Image.open("pulp.jpg")
default = True
else:
img = Image.open(uploaded_file)
if img.size[0] > 800 or img.size[1] > 800:
if img.size[0] < img.size[1]:
new_size = (int(800 * img.size[0] / img.size[1]), 800)
else:
new_size = (800, int(800 * img.size[1] / img.size[0]))
img = img.resize(new_size)
default = False
return np.array(img), compute_depth(img), default
def main():
st.markdown(
"""
<style>
label{
height: 0px !important;
min-height: 0px !important;
margin-bottom: 0px !important;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(
"""
# Depth-aware text addition
Add text ***inside*** an image!
Upload an image, enter some text and adjust the ***depth*** where you want the text to be displayed. You can also define its location and appearance (font, color, transparency and size).
Built with [PyTorch](https://pytorch.org/), Intel's [MiDaS model](https://pytorch.org/hub/intelisl_midas_v2/), [Streamlit](https://streamlit.io/), [pillow](https://python-pillow.org/) and inspired by the official [video](https://youtu.be/eTa1jHk1Lxc) of *Jenny of Oldstones* by Florence + the Machine
To go further:
- [blog post](https://vivien000.github.io/blog/journal/adding-text-inside-pictures-and-videos.html)
- [notebook](https://colab.research.google.com/github/vivien000/depth-aware_captioning/blob/master/Depth_aware_Video_Captioning.ipynb) for videos
- [examples](https://youtu.be/RtkBplRuWhg?list=PLlPB25tBWqtVhj4Ink8hl9Evc2dlIX4Jh) of videos
"""
)
uploaded_file = st.file_uploader("", type=["jpg", "jpeg"])
with st.spinner("Analyzing the image - Please wait a few seconds"):
img, depth_map, default = load_img(uploaded_file)
if default:
x0, y0, alpha0, font_size0, depth0, font0 = 0.02, 0.68, 0.99, 0.07, 0.12, 4
text0 = "Pulp Fiction"
else:
x0, y0, alpha0, font_size0, depth0, font0 = 0.1, 0.9, 0.8, 0.08, 0.5, 0
text0 = "Enter your text here"
colA, colB, colC = st.columns((13, 1, 1))
with colA:
text = st.text_input("", text0)
with colB:
st.markdown("Color:")
with colC:
color = st.color_picker("", value="#FFFFFF")
col1, _, col2 = st.columns((4, 1, 4))
with col1:
depth = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=depth0,
format_func=lambda x: "Foreground"
if x == 0.0
else "Background"
if x == 1.0
else "",
)
x = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=x0,
format_func=lambda x: "Left" if x == 0.0 else "Right" if x == 1.0 else "",
)
y = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=y0,
format_func=lambda x: "Bottom" if x == 0.0 else "Top" if x == 1.0 else "",
)
with col2:
font_size = st.select_slider(
"",
options=[0.04 + i / 100 for i in range(0, 17)],
value=font_size0,
format_func=lambda x: "Small font"
if x == 0.04
else "Large font"
if x == 0.2
else "",
)
alpha = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=alpha0,
format_func=lambda x: "Transparent"
if x == 0.0
else "Opaque"
if x == 1.0
else "",
)
font = st.selectbox("", FONTS, index=font0)
font = f"fonts/{font[6:]}.ttf"
captioned = add_caption(
img,
text,
x=x,
y=y,
depth=depth,
depth_map=depth_map,
font=font,
font_size=font_size,
alpha=alpha,
color=hex_to_rgb(color[1:]),
)
st.image(captioned)
if __name__ == "__main__":
main()
|