File size: 14,111 Bytes
42ee455
 
b699ae9
42ee455
 
 
 
 
 
 
 
 
 
 
 
b699ae9
 
42ee455
 
 
 
 
b699ae9
 
 
 
42ee455
 
b699ae9
42ee455
 
b699ae9
 
 
 
 
 
 
 
 
 
42ee455
b699ae9
 
 
 
 
 
42ee455
 
 
 
b699ae9
 
42ee455
 
 
 
 
 
 
b699ae9
 
 
 
 
 
 
 
 
42ee455
b699ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ee455
 
 
 
b699ae9
 
 
 
 
 
 
42ee455
 
 
 
 
b699ae9
 
 
 
 
42ee455
 
b699ae9
42ee455
 
b699ae9
 
 
 
 
42ee455
b699ae9
 
 
 
 
 
42ee455
 
b699ae9
 
42ee455
b699ae9
42ee455
 
 
 
 
b699ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
42ee455
 
 
2465927
 
 
b699ae9
 
2465927
 
 
 
 
 
 
b699ae9
 
 
 
 
 
 
 
2465927
b699ae9
 
 
2465927
 
 
 
b699ae9
 
2465927
 
 
 
 
b699ae9
 
 
2465927
 
b699ae9
2465927
 
 
 
 
 
 
 
b699ae9
 
2465927
 
 
 
b699ae9
 
2465927
b699ae9
 
 
 
2465927
 
b699ae9
2465927
b699ae9
 
 
 
 
 
 
 
 
 
 
 
 
2465927
b699ae9
2465927
 
 
 
 
 
 
 
b699ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c777272
b699ae9
 
c777272
 
 
b699ae9
 
c777272
 
 
 
b699ae9
 
 
 
 
 
 
 
c777272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"""Contains custom charts used inside the dashboard."""

from typing import Union

import pandas as pd
import vizro.plotly.express as px
from plotly import graph_objects as go
from plotly.subplots import make_subplots
from vizro.models.types import capture


# TODO: consider how this should be represented in the code example files. Since the code is copy and pasted
# it can get out of sync. But probably we don't want the docstrings in the short code snippet.
# Ultimately these charts will probably move to vizro.charts anyway.
@capture("graph")
def butterfly(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
    """Creates a butterfly chart based on px.bar.

    A butterfly chart is a type of bar chart where two sets of bars are displayed back-to-back, often used to compare
    two sets of data.

    Args:
        data_frame: DataFrame for the chart. Can be long form or wide form.
            See https://plotly.com/python/wide-form/.
        **kwargs: Keyword arguments to pass into px.bar (e.g. x, y, labels).
            See https://plotly.com/python-api-reference/generated/plotly.express.bar.html.

    Returns:
        go.Figure: Butterfly chart.

    """
    fig = px.bar(data_frame, **kwargs)

    orientation = fig.data[0].orientation
    x_or_y = "x" if orientation == "h" else "y"

    # Create new x or y axis with scale reversed (so going from 0 at the midpoint outwards) to do back-to-back bars.
    fig.update_traces({f"{x_or_y}axis": f"{x_or_y}2"}, selector=1)
    fig.update_layout({f"{x_or_y}axis2": fig.layout[f"{x_or_y}axis"]})
    fig.update_layout(
        {f"{x_or_y}axis": {"autorange": "reversed", "domain": [0, 0.5]}, f"{x_or_y}axis2": {"domain": [0.5, 1]}}
    )

    if orientation == "h":
        fig.add_vline(x=0, line_width=2, line_color="grey")
    else:
        fig.add_hline(y=0, line_width=2, line_color="grey")

    return fig


@capture("graph")
def sankey(data_frame: pd.DataFrame, source: str, target: str, value: str, labels: list[str]) -> go.Figure:
    """Creates a Sankey chart based on go.Sankey.

    A Sankey chart is a type of flow diagram where the width of the arrows is proportional to the flow rate.
    It is used to visualize the flow of resources or data between different stages or categories.

    For detailed information on additional parameters and customization, refer to the Plotly documentation:
    https://plotly.com/python/reference/sankey/

    Args:
        data_frame: DataFrame for the chart.
        source: The name of the column in data_frame for source nodes.
        target: The name of the column in data_frame for target nodes.
        value: The name of the column in data_frame for the values representing the flow between nodes.
        labels: A list of labels for the nodes.

    Returns:
        go.Figure: Sankey chart.
    """
    return go.Figure(
        data=go.Sankey(
            node={
                "pad": 16,
                "thickness": 16,
                "label": labels,
            },
            link={
                "source": data_frame[source],
                "target": data_frame[target],
                "value": data_frame[value],
                "label": labels,
                "color": "rgba(205, 209, 228, 0.4)",
            },
        ),
        layout={"barmode": "relative"},
    )


@capture("graph")
def column_and_line(
    data_frame: pd.DataFrame,
    x: Union[str, pd.Series, list[str], list[pd.Series]],
    y_column: Union[str, pd.Series, list[str], list[pd.Series]],
    y_line: Union[str, pd.Series, list[str], list[pd.Series]],
) -> go.Figure:
    """Creates a combined column and line chart based on px.bar and px.line.

    This function generates a chart with a bar graph for one variable (y-axis 1) and a line graph for another variable
    (y-axis 2), sharing the same x-axis. The y-axes for the bar and line graphs are synchronized and overlaid.

    Args:
        data_frame: DataFrame for the chart. Can be long form or wide form.
            See https://plotly.com/python/wide-form/.
        x: Either a name of a column in data_frame, or a pandas Series or array_like object.
        y_column: Either a name of a column in data_frame, or a pandas Series or array_like object.
        y_line: Either a name of a column in data_frame, or a pandas Series or array_like object.

    Returns:
        go.Figure: Combined column and line chart.

    """
    # We use px.bar and px.line so that we get the plotly express hoverdata, axes titles etc. Bar is used arbitrarily
    # selected as the "base" plot and then line added on top of it. This means manually incrementing
    # color_discrete_sequence for the line plot so that the colors are not the same for bar and line.
    bar = px.bar(data_frame, x=x, y=y_column)
    fig = make_subplots(figure=bar, specs=[[{"secondary_y": True}]])

    line = px.line(
        data_frame,
        x=x,
        y=y_line,
        markers=True,
        color_discrete_sequence=fig.layout.template.layout.colorway[len(bar.data) :],
    )

    for trace in line.data:
        fig.add_trace(trace, secondary_y=True)

    fig.update_layout(yaxis2={"tickmode": "sync", "overlaying": "y", "title": line.layout.yaxis.title})

    return fig


@capture("graph")
def categorical_column(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
    """Creates categorical bar chart based on px.bar.

    Args:
        data_frame: DataFrame for the chart. Can be long form or wide form.
            See https://plotly.com/python/wide-form/.
        **kwargs: Keyword arguments to pass into px.bar (e.g. x, y, labels).
            See https://plotly.com/python-api-reference/generated/plotly.express.bar.html.

    Returns:
       go.Figure: Categorical column chart.

    """
    fig = px.bar(data_frame, **kwargs)
    # So ticks are aligned with bars when xaxes values are numbers (e.g. years)
    fig.update_xaxes(type="category")
    return fig


@capture("graph")
def waterfall(data_frame: pd.DataFrame, x: str, y: str, measure: list[str]) -> go.Figure:
    """Creates a waterfall chart based on go.Waterfall.

    A Waterfall chart visually breaks down the cumulative effect of sequential positive and negative values,
    showing how each value contributes to the total.

    For additional parameters and customization options, see the Plotly documentation:
    https://plotly.com/python/reference/waterfall/

    Args:
        data_frame: TDataFrame for the chart.
        x: Column name in data_frame for x-axis values.
        y: Column name in data_frame for y-axis values.
        measure: List specifying the type of each bar, can be "relative", "total", or "absolute".

    Returns:
        go.Figure: Waterfall chart.
    """
    return go.Figure(
        data=go.Waterfall(x=data_frame[x], y=data_frame[y], measure=data_frame[measure]),
        layout={"showlegend": False},
    )


@capture("graph")
def radar(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
    """Creates a radar chart based on px.line_polar.

    A radar chart is a type of data visualization in which there are three or more
    variables represented on axes that originate from the same central point.

    Args:
        data_frame: DataFrame for the chart.
        **kwargs: Keyword arguments to pass into px.line_polar (e.g. r, theta).
            See https://plotly.com/python-api-reference/generated/plotly.express.line_polar.html.

    Returns:
       go.Figure: A Plotly Figure object of the radar chart.

    """
    fig = px.line_polar(data_frame, **kwargs)
    fig.update_traces(fill="toself")
    return fig


@capture("graph")
def dumbbell(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
    """Creates a dumbbell chart based on px.scatter.

    A dumbbell plot is a type of dot plot where the points, displaying different groups, are connected with a straight
    line. They are ideal for illustrating differences or gaps between two points.

    Inspired by: https://community.plotly.com/t/how-to-make-dumbbell-plots-in-plotly-python/47762

    Args:
        data_frame: DataFrame for the chart. Can be long form or wide form.
            See https://plotly.com/python/wide-form/.
        **kwargs: Keyword arguments to pass into px.scatter (e.g. x, y, labels).
            See https://plotly.com/python-api-reference/generated/plotly.scatter.html.

    Returns:
        go.Figure: Dumbbell chart.
    """
    fig = px.scatter(data_frame, **kwargs)

    orientation = fig.data[0].orientation
    x_or_y = "x" if orientation == "h" else "y"
    y_or_x = "y" if orientation == "h" else "x"

    # Add lines between every pair of points.
    for x_or_y_0, x_or_y_1, y_or_x_0, y_or_x_1 in zip(
        fig.data[0][x_or_y],
        fig.data[1][x_or_y],
        fig.data[0][y_or_x],
        fig.data[1][y_or_x],
    ):
        fig.add_shape(
            **{f"{x_or_y}0": x_or_y_0, f"{x_or_y}1": x_or_y_1, f"{y_or_x}0": y_or_x_0, f"{y_or_x}1": y_or_x_1},
            type="line",
            layer="below",
            line_color="grey",
            line_width=3,
        )

    fig.update_traces(marker_size=12)
    return fig


@capture("graph")
def diverging_stacked_bar(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
    """Creates a diverging stacked bar chart based on px.bar.

    This type of chart is a variant of the standard stacked bar chart, with bars aligned on a central baseline to
    show both positive and negative values. Each bar is segmented to represent different categories.

    This function is not suitable for diverging stacked bar charts that include a neutral category. The first half of
    bars plotted are assumed to be negative ("Disagree") and the second half are assumed to be positive ("Agree").

    Inspired by: https://community.plotly.com/t/need-help-in-making-diverging-stacked-bar-charts/34023

    Args:
        data_frame: DataFrame for the chart. Can be long form or wide form.
            See https://plotly.com/python/wide-form/.
        **kwargs: Keyword arguments to pass into px.bar (e.g. x, y, labels).
            See https://plotly.com/python-api-reference/generated/plotly.express.bar.html.

    Returns:
       go.Figure: Diverging stacked bar chart.
    """
    fig = px.bar(data_frame, **kwargs)

    # Fix legend position according to the order of traces. This ensures that "Strongly disagree" comes before
    # "Disagree".
    for i, trace in enumerate(fig.data):
        trace.update(legendrank=i)

    if "color_discrete_sequence" not in kwargs and "color_discrete_map" not in kwargs:
        # Make a discrete diverging colorscale by sampling the right number of colors.
        # Need to explicitly convert colorscale to list of lists due to plotly bug/inconsistency:
        # https://github.com/plotly/plotly.py/issues/4808
        colorscale = [list(x) for x in fig.layout.template.layout.colorscale.diverging]
        colors = px.colors.sample_colorscale(colorscale, len(fig.data), 0.2, 0.8)
        for trace, color in zip(fig.data, colors):
            trace.update(marker_color=color)

    # Plotly draws traces in order they appear in fig.data, starting from x=0 and then stacking outwards.
    # We need negative traces to be ordered so that "Disagree" comes before "Strongly disagree", so reverse the
    # order of first half of traces.
    mutable_traces = list(fig.data)
    mutable_traces[: len(fig.data) // 2] = reversed(fig.data[: len(fig.data) // 2])
    fig.data = mutable_traces

    # Create new x or y axis with scale reversed (so going from 0 at the midpoint outwards) to do negative bars.
    orientation = fig.data[0].orientation
    x_or_y = "x" if orientation == "h" else "y"

    for trace_idx in range(len(fig.data) // 2, len(fig.data)):
        fig.update_traces({f"{x_or_y}axis": f"{x_or_y}2"}, selector=trace_idx)

    # Add ticksuffix and range limitations on both sids for correct interpretation of diverging stacked bar
    # with percentage data
    fig.update_layout({f"{x_or_y}axis": {"ticksuffix": "%"}})
    fig.update_layout({f"{x_or_y}axis2": fig.layout[f"{x_or_y}axis"]})
    fig.update_layout(
        {
            f"{x_or_y}axis": {"domain": [0, 0.5], "range": [100, 0]},
            f"{x_or_y}axis2": {"domain": [0.5, 1], "range": [0, 100]},
        }
    )

    if orientation == "h":
        fig.add_vline(x=0, line_width=2, line_color="grey")
    else:
        fig.add_hline(y=0, line_width=2, line_color="grey")

    return fig


@capture("graph")
def lollipop(data_frame: pd.DataFrame, **kwargs):
    """Creates a lollipop based on px.scatter.

    A lollipop chart is a variation of a bar chart where each data point is represented by a line and a dot at the end
    to mark the value.

    Inspired by: https://towardsdatascience.com/lollipop-dumbbell-charts-with-plotly-696039d5f85

    Args:
        data_frame: DataFrame for the chart. Can be long form or wide form.
            See https://plotly.com/python/wide-form/.
        **kwargs: Keyword arguments to pass into px.scatter (e.g. x, y, labels).
            See https://plotly.com/python-api-reference/generated/plotly.scatter.html.

    Returns:
        go.Figure: Lollipop chart.
    """
    # Plots the dots of the lollipop chart
    fig = px.scatter(data_frame, **kwargs)

    # Enables the orientation of the chart to be either horizontal or vertical
    orientation = fig.data[0].orientation
    x_or_y = "x" if orientation == "h" else "y"
    y_or_x = "y" if orientation == "h" else "x"

    # Plots the lines of the lollipop chart
    for x_or_y_value, y_or_x_value in zip(fig.data[0][x_or_y], fig.data[0][y_or_x]):
        fig.add_trace(go.Scatter({x_or_y: [0, x_or_y_value], y_or_x: [y_or_x_value, y_or_x_value], "mode": "lines"}))

    # Styles the lollipop chart and makes it uni-colored
    fig.update_traces(
        marker_size=12,
        line_width=3,
        line_color=fig.layout.template.layout.colorway[0],
    )

    fig.update_layout(
        {
            "showlegend": False,
            f"{x_or_y}axis_showgrid": True,
            f"{y_or_x}axis_showgrid": False,
            f"{x_or_y}axis_rangemode": "tozero",
        },
    )
    return fig