Spaces:
Running
Running
File size: 14,111 Bytes
42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 b699ae9 42ee455 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 2465927 b699ae9 c777272 b699ae9 c777272 b699ae9 c777272 b699ae9 c777272 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
"""Contains custom charts used inside the dashboard."""
from typing import Union
import pandas as pd
import vizro.plotly.express as px
from plotly import graph_objects as go
from plotly.subplots import make_subplots
from vizro.models.types import capture
# TODO: consider how this should be represented in the code example files. Since the code is copy and pasted
# it can get out of sync. But probably we don't want the docstrings in the short code snippet.
# Ultimately these charts will probably move to vizro.charts anyway.
@capture("graph")
def butterfly(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
"""Creates a butterfly chart based on px.bar.
A butterfly chart is a type of bar chart where two sets of bars are displayed back-to-back, often used to compare
two sets of data.
Args:
data_frame: DataFrame for the chart. Can be long form or wide form.
See https://plotly.com/python/wide-form/.
**kwargs: Keyword arguments to pass into px.bar (e.g. x, y, labels).
See https://plotly.com/python-api-reference/generated/plotly.express.bar.html.
Returns:
go.Figure: Butterfly chart.
"""
fig = px.bar(data_frame, **kwargs)
orientation = fig.data[0].orientation
x_or_y = "x" if orientation == "h" else "y"
# Create new x or y axis with scale reversed (so going from 0 at the midpoint outwards) to do back-to-back bars.
fig.update_traces({f"{x_or_y}axis": f"{x_or_y}2"}, selector=1)
fig.update_layout({f"{x_or_y}axis2": fig.layout[f"{x_or_y}axis"]})
fig.update_layout(
{f"{x_or_y}axis": {"autorange": "reversed", "domain": [0, 0.5]}, f"{x_or_y}axis2": {"domain": [0.5, 1]}}
)
if orientation == "h":
fig.add_vline(x=0, line_width=2, line_color="grey")
else:
fig.add_hline(y=0, line_width=2, line_color="grey")
return fig
@capture("graph")
def sankey(data_frame: pd.DataFrame, source: str, target: str, value: str, labels: list[str]) -> go.Figure:
"""Creates a Sankey chart based on go.Sankey.
A Sankey chart is a type of flow diagram where the width of the arrows is proportional to the flow rate.
It is used to visualize the flow of resources or data between different stages or categories.
For detailed information on additional parameters and customization, refer to the Plotly documentation:
https://plotly.com/python/reference/sankey/
Args:
data_frame: DataFrame for the chart.
source: The name of the column in data_frame for source nodes.
target: The name of the column in data_frame for target nodes.
value: The name of the column in data_frame for the values representing the flow between nodes.
labels: A list of labels for the nodes.
Returns:
go.Figure: Sankey chart.
"""
return go.Figure(
data=go.Sankey(
node={
"pad": 16,
"thickness": 16,
"label": labels,
},
link={
"source": data_frame[source],
"target": data_frame[target],
"value": data_frame[value],
"label": labels,
"color": "rgba(205, 209, 228, 0.4)",
},
),
layout={"barmode": "relative"},
)
@capture("graph")
def column_and_line(
data_frame: pd.DataFrame,
x: Union[str, pd.Series, list[str], list[pd.Series]],
y_column: Union[str, pd.Series, list[str], list[pd.Series]],
y_line: Union[str, pd.Series, list[str], list[pd.Series]],
) -> go.Figure:
"""Creates a combined column and line chart based on px.bar and px.line.
This function generates a chart with a bar graph for one variable (y-axis 1) and a line graph for another variable
(y-axis 2), sharing the same x-axis. The y-axes for the bar and line graphs are synchronized and overlaid.
Args:
data_frame: DataFrame for the chart. Can be long form or wide form.
See https://plotly.com/python/wide-form/.
x: Either a name of a column in data_frame, or a pandas Series or array_like object.
y_column: Either a name of a column in data_frame, or a pandas Series or array_like object.
y_line: Either a name of a column in data_frame, or a pandas Series or array_like object.
Returns:
go.Figure: Combined column and line chart.
"""
# We use px.bar and px.line so that we get the plotly express hoverdata, axes titles etc. Bar is used arbitrarily
# selected as the "base" plot and then line added on top of it. This means manually incrementing
# color_discrete_sequence for the line plot so that the colors are not the same for bar and line.
bar = px.bar(data_frame, x=x, y=y_column)
fig = make_subplots(figure=bar, specs=[[{"secondary_y": True}]])
line = px.line(
data_frame,
x=x,
y=y_line,
markers=True,
color_discrete_sequence=fig.layout.template.layout.colorway[len(bar.data) :],
)
for trace in line.data:
fig.add_trace(trace, secondary_y=True)
fig.update_layout(yaxis2={"tickmode": "sync", "overlaying": "y", "title": line.layout.yaxis.title})
return fig
@capture("graph")
def categorical_column(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
"""Creates categorical bar chart based on px.bar.
Args:
data_frame: DataFrame for the chart. Can be long form or wide form.
See https://plotly.com/python/wide-form/.
**kwargs: Keyword arguments to pass into px.bar (e.g. x, y, labels).
See https://plotly.com/python-api-reference/generated/plotly.express.bar.html.
Returns:
go.Figure: Categorical column chart.
"""
fig = px.bar(data_frame, **kwargs)
# So ticks are aligned with bars when xaxes values are numbers (e.g. years)
fig.update_xaxes(type="category")
return fig
@capture("graph")
def waterfall(data_frame: pd.DataFrame, x: str, y: str, measure: list[str]) -> go.Figure:
"""Creates a waterfall chart based on go.Waterfall.
A Waterfall chart visually breaks down the cumulative effect of sequential positive and negative values,
showing how each value contributes to the total.
For additional parameters and customization options, see the Plotly documentation:
https://plotly.com/python/reference/waterfall/
Args:
data_frame: TDataFrame for the chart.
x: Column name in data_frame for x-axis values.
y: Column name in data_frame for y-axis values.
measure: List specifying the type of each bar, can be "relative", "total", or "absolute".
Returns:
go.Figure: Waterfall chart.
"""
return go.Figure(
data=go.Waterfall(x=data_frame[x], y=data_frame[y], measure=data_frame[measure]),
layout={"showlegend": False},
)
@capture("graph")
def radar(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
"""Creates a radar chart based on px.line_polar.
A radar chart is a type of data visualization in which there are three or more
variables represented on axes that originate from the same central point.
Args:
data_frame: DataFrame for the chart.
**kwargs: Keyword arguments to pass into px.line_polar (e.g. r, theta).
See https://plotly.com/python-api-reference/generated/plotly.express.line_polar.html.
Returns:
go.Figure: A Plotly Figure object of the radar chart.
"""
fig = px.line_polar(data_frame, **kwargs)
fig.update_traces(fill="toself")
return fig
@capture("graph")
def dumbbell(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
"""Creates a dumbbell chart based on px.scatter.
A dumbbell plot is a type of dot plot where the points, displaying different groups, are connected with a straight
line. They are ideal for illustrating differences or gaps between two points.
Inspired by: https://community.plotly.com/t/how-to-make-dumbbell-plots-in-plotly-python/47762
Args:
data_frame: DataFrame for the chart. Can be long form or wide form.
See https://plotly.com/python/wide-form/.
**kwargs: Keyword arguments to pass into px.scatter (e.g. x, y, labels).
See https://plotly.com/python-api-reference/generated/plotly.scatter.html.
Returns:
go.Figure: Dumbbell chart.
"""
fig = px.scatter(data_frame, **kwargs)
orientation = fig.data[0].orientation
x_or_y = "x" if orientation == "h" else "y"
y_or_x = "y" if orientation == "h" else "x"
# Add lines between every pair of points.
for x_or_y_0, x_or_y_1, y_or_x_0, y_or_x_1 in zip(
fig.data[0][x_or_y],
fig.data[1][x_or_y],
fig.data[0][y_or_x],
fig.data[1][y_or_x],
):
fig.add_shape(
**{f"{x_or_y}0": x_or_y_0, f"{x_or_y}1": x_or_y_1, f"{y_or_x}0": y_or_x_0, f"{y_or_x}1": y_or_x_1},
type="line",
layer="below",
line_color="grey",
line_width=3,
)
fig.update_traces(marker_size=12)
return fig
@capture("graph")
def diverging_stacked_bar(data_frame: pd.DataFrame, **kwargs) -> go.Figure:
"""Creates a diverging stacked bar chart based on px.bar.
This type of chart is a variant of the standard stacked bar chart, with bars aligned on a central baseline to
show both positive and negative values. Each bar is segmented to represent different categories.
This function is not suitable for diverging stacked bar charts that include a neutral category. The first half of
bars plotted are assumed to be negative ("Disagree") and the second half are assumed to be positive ("Agree").
Inspired by: https://community.plotly.com/t/need-help-in-making-diverging-stacked-bar-charts/34023
Args:
data_frame: DataFrame for the chart. Can be long form or wide form.
See https://plotly.com/python/wide-form/.
**kwargs: Keyword arguments to pass into px.bar (e.g. x, y, labels).
See https://plotly.com/python-api-reference/generated/plotly.express.bar.html.
Returns:
go.Figure: Diverging stacked bar chart.
"""
fig = px.bar(data_frame, **kwargs)
# Fix legend position according to the order of traces. This ensures that "Strongly disagree" comes before
# "Disagree".
for i, trace in enumerate(fig.data):
trace.update(legendrank=i)
if "color_discrete_sequence" not in kwargs and "color_discrete_map" not in kwargs:
# Make a discrete diverging colorscale by sampling the right number of colors.
# Need to explicitly convert colorscale to list of lists due to plotly bug/inconsistency:
# https://github.com/plotly/plotly.py/issues/4808
colorscale = [list(x) for x in fig.layout.template.layout.colorscale.diverging]
colors = px.colors.sample_colorscale(colorscale, len(fig.data), 0.2, 0.8)
for trace, color in zip(fig.data, colors):
trace.update(marker_color=color)
# Plotly draws traces in order they appear in fig.data, starting from x=0 and then stacking outwards.
# We need negative traces to be ordered so that "Disagree" comes before "Strongly disagree", so reverse the
# order of first half of traces.
mutable_traces = list(fig.data)
mutable_traces[: len(fig.data) // 2] = reversed(fig.data[: len(fig.data) // 2])
fig.data = mutable_traces
# Create new x or y axis with scale reversed (so going from 0 at the midpoint outwards) to do negative bars.
orientation = fig.data[0].orientation
x_or_y = "x" if orientation == "h" else "y"
for trace_idx in range(len(fig.data) // 2, len(fig.data)):
fig.update_traces({f"{x_or_y}axis": f"{x_or_y}2"}, selector=trace_idx)
# Add ticksuffix and range limitations on both sids for correct interpretation of diverging stacked bar
# with percentage data
fig.update_layout({f"{x_or_y}axis": {"ticksuffix": "%"}})
fig.update_layout({f"{x_or_y}axis2": fig.layout[f"{x_or_y}axis"]})
fig.update_layout(
{
f"{x_or_y}axis": {"domain": [0, 0.5], "range": [100, 0]},
f"{x_or_y}axis2": {"domain": [0.5, 1], "range": [0, 100]},
}
)
if orientation == "h":
fig.add_vline(x=0, line_width=2, line_color="grey")
else:
fig.add_hline(y=0, line_width=2, line_color="grey")
return fig
@capture("graph")
def lollipop(data_frame: pd.DataFrame, **kwargs):
"""Creates a lollipop based on px.scatter.
A lollipop chart is a variation of a bar chart where each data point is represented by a line and a dot at the end
to mark the value.
Inspired by: https://towardsdatascience.com/lollipop-dumbbell-charts-with-plotly-696039d5f85
Args:
data_frame: DataFrame for the chart. Can be long form or wide form.
See https://plotly.com/python/wide-form/.
**kwargs: Keyword arguments to pass into px.scatter (e.g. x, y, labels).
See https://plotly.com/python-api-reference/generated/plotly.scatter.html.
Returns:
go.Figure: Lollipop chart.
"""
# Plots the dots of the lollipop chart
fig = px.scatter(data_frame, **kwargs)
# Enables the orientation of the chart to be either horizontal or vertical
orientation = fig.data[0].orientation
x_or_y = "x" if orientation == "h" else "y"
y_or_x = "y" if orientation == "h" else "x"
# Plots the lines of the lollipop chart
for x_or_y_value, y_or_x_value in zip(fig.data[0][x_or_y], fig.data[0][y_or_x]):
fig.add_trace(go.Scatter({x_or_y: [0, x_or_y_value], y_or_x: [y_or_x_value, y_or_x_value], "mode": "lines"}))
# Styles the lollipop chart and makes it uni-colored
fig.update_traces(
marker_size=12,
line_width=3,
line_color=fig.layout.template.layout.colorway[0],
)
fig.update_layout(
{
"showlegend": False,
f"{x_or_y}axis_showgrid": True,
f"{y_or_x}axis_showgrid": False,
f"{x_or_y}axis_rangemode": "tozero",
},
)
return fig
|