File size: 9,478 Bytes
42ee455
 
 
 
b699ae9
 
42ee455
b699ae9
42ee455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b699ae9
 
 
 
 
42ee455
b699ae9
 
 
 
 
42ee455
 
 
 
b699ae9
42ee455
b699ae9
42ee455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b699ae9
 
 
 
 
 
 
 
 
 
42ee455
b699ae9
42ee455
 
 
 
b699ae9
42ee455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b699ae9
 
 
 
 
 
 
 
 
 
 
 
42ee455
 
 
 
b699ae9
42ee455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b699ae9
 
 
 
 
 
 
 
 
 
 
 
42ee455
 
 
 
b699ae9
42ee455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b699ae9
 
 
 
 
 
 
 
 
 
 
 
42ee455
 
 
 
b699ae9
2465927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b699ae9
 
 
 
 
 
 
 
 
 
 
 
2465927
 
 
b699ae9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""Magnitude charts."""

import vizro.models as vm

from pages._pages_utils import PAGE_GRID, make_code_clipboard_from_py_file
from pages.examples import bar, magnitude_column, paired_bar, paired_column, parallel_coordinates, radar

bar_page = vm.Page(
    title="Bar",
    path="magnitude/bar",
    layout=vm.Layout(grid=PAGE_GRID),
    components=[
        vm.Card(
            text="""

            #### What is a bar chart?

            A bar chart displays bars with lengths proportional to the values they represent. One axis shows the
            categories to compare, and the other provides a value scale starting from zero.

             

            #### When should I use it?

            Use a bar chart to help your audience compare sizes and identify patterns in categorical data, such as
            **how many?** in each category. Arrange the bars in any order to fit the message you want to emphasize.
            Ensure clear labeling, especially with many bars, and consider using a legend or abbreviations with fuller
            descriptions below.
        """
        ),
        vm.Graph(figure=bar.fig),
        vm.Tabs(
            tabs=[
                vm.Container(
                    title="Vizro dashboard", components=[make_code_clipboard_from_py_file("bar.py", mode="vizro")]
                ),
                vm.Container(
                    title="Plotly figure",
                    components=[make_code_clipboard_from_py_file("bar.py", mode="plotly")],
                ),
            ]
        ),
    ],
)


# Note: Code example for magnitude/column differs from time/column. The text description is the same.
column_page = vm.Page(
    id="magnitude-column",
    path="magnitude/column",
    title="Column",
    layout=vm.Layout(grid=PAGE_GRID),
    components=[
        vm.Card(
            text="""
                #### What is a column chart?

                A column chart is a type of bar chart where data is represented with vertical columns. Each
                column's height corresponds to the value it represents, with the y-axis starting from zero.

                 

                #### When should I use it?

                Use a column chart to compare sizes and identify patterns in categorical data, including time-based
                data. Arrange columns to fit your message, and for time-based data, order them chronologically to
                highlight trends. Ensure clear labeling, especially with many categories, and consider using a legend
                or abbreviations with fuller descriptions below.
        """
        ),
        vm.Graph(figure=magnitude_column.fig),
        vm.Tabs(
            tabs=[
                vm.Container(
                    title="Vizro dashboard",
                    components=[make_code_clipboard_from_py_file("magnitude_column.py", mode="vizro")],
                ),
                vm.Container(
                    title="Plotly figure",
                    components=[make_code_clipboard_from_py_file("magnitude_column.py", mode="plotly")],
                ),
            ]
        ),
    ],
)

paired_bar_page = vm.Page(
    title="Paired bar",
    path="magnitude/paired-bar",
    layout=vm.Layout(grid=PAGE_GRID),
    components=[
        vm.Card(
            text="""

            #### What is a paired bar chart?

            A paired bar chart, also known as a grouped bar chart, displays bars grouped together in pairs for each
            category, with the lengths of the bars proportional to the values they represent. One axis shows the
            categories to compare, while the other provides a value scale starting from zero.

             

            #### When should I use it?

            Use a paired bar chart to compare multiple sets of data within the same categories. This type of chart is
            particularly useful for highlighting differences and similarities between groups, such as **how many?** in
            each category across different groups. Arrange the paired bars clearly to fit the message you want to
            emphasize. Ensure clear labeling, especially with many bars, and consider using a legend or abbreviations
            with fuller descriptions below.
        """
        ),
        vm.Graph(figure=paired_bar.fig),
        vm.Tabs(
            tabs=[
                vm.Container(
                    title="Vizro dashboard",
                    components=[make_code_clipboard_from_py_file("paired_bar.py", mode="vizro")],
                ),
                vm.Container(
                    title="Plotly figure",
                    components=[make_code_clipboard_from_py_file("paired_bar.py", mode="plotly")],
                ),
            ]
        ),
    ],
)

paired_column_page = vm.Page(
    title="Paired column",
    path="magnitude/paired-column",
    layout=vm.Layout(grid=PAGE_GRID),
    components=[
        vm.Card(
            text="""

            #### What is a paired column chart?

            A paired column chart, also known as a grouped column chart, displays columns grouped together in pairs for
            each category, with the heights of the columns proportional to the values they represent. One axis shows the
            categories to compare, while the other provides a value scale starting from zero.

             

            #### When should I use it?

            Use a paired column chart to compare multiple sets of data within the same categories. This type of chart is
            particularly useful for highlighting differences and similarities between groups, such as **how many?** in
            each category across different groups. Arrange the paired columns clearly to fit the message you want to
            emphasize. Ensure clear labeling, especially with many columns, and consider using a legend or abbreviations
            with fuller descriptions below.
        """
        ),
        vm.Graph(figure=paired_column.fig),
        vm.Tabs(
            tabs=[
                vm.Container(
                    title="Vizro dashboard",
                    components=[make_code_clipboard_from_py_file("paired_column.py", mode="vizro")],
                ),
                vm.Container(
                    title="Plotly figure",
                    components=[make_code_clipboard_from_py_file("paired_column.py", mode="plotly")],
                ),
            ]
        ),
    ],
)

parallel_coordinates_page = vm.Page(
    path="magnitude/parallel-coordinates ",
    title="Parallel coordinates",
    layout=vm.Layout(grid=PAGE_GRID),
    components=[
        vm.Card(
            text="""
                #### What is a parallel coordinates chart?

                A parallel coordinates chart is a type of data visualization used to plot multivariate numerical data.
                Each axis represents a different variable, and lines connecting the axes indicate the values of
                individual data points across these variables.

                 

                #### When should I use it?

                Use a parallel coordinates chart to explore relationships and patterns in high-dimensional data.
                This chart is particularly useful for comparing multiple variables simultaneously and identifying
                correlations or clusters within the data. Ensure clear labeling of each axis and consider using color
                coding to distinguish between different data points or groups.
        """
        ),
        vm.Graph(figure=parallel_coordinates.fig),
        vm.Tabs(
            tabs=[
                vm.Container(
                    title="Vizro dashboard",
                    components=[make_code_clipboard_from_py_file("parallel_coordinates.py", mode="vizro")],
                ),
                vm.Container(
                    title="Plotly figure",
                    components=[make_code_clipboard_from_py_file("parallel_coordinates.py", mode="plotly")],
                ),
            ]
        ),
    ],
)

radar_page = vm.Page(
    path="magnitude/radar",
    title="Radar",
    layout=vm.Layout(grid=PAGE_GRID),
    components=[
        vm.Card(
            text="""
                #### What is a radar chart?
                A radar chart, also known as a spider plot or star plot, is a type of data visualization
                used to display multivariate data. It consists of three or more variables represented
                on axes that originate from the same central point.

                #### When should I use it?
                Use a radar chart to compare performance or characteristics across multiple variables.
                The chart effectively highlights strengths, weaknesses, patterns, and outliers.
                To maintain clarity, use consistent scales for all axes and clearly mark labels and data points.
        """
        ),
        vm.Graph(figure=radar.fig),
        vm.Tabs(
            tabs=[
                vm.Container(
                    title="Vizro dashboard", components=[make_code_clipboard_from_py_file("radar.py", mode="vizro")]
                ),
                vm.Container(
                    title="Plotly figure",
                    components=[make_code_clipboard_from_py_file("radar.py", mode="plotly")],
                ),
            ]
        ),
    ],
)

pages = [bar_page, column_page, paired_bar_page, paired_column_page, parallel_coordinates_page, radar_page]