vladelesin
commited on
Commit
•
7aec40a
1
Parent(s):
dbfdf1a
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
from datasets import load_dataset
|
5 |
-
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
|
|
|
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
#
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-
|
13 |
-
|
14 |
-
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
-
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
-
|
23 |
-
|
24 |
-
def translate(audio):
|
25 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
-
return outputs[
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
-
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
-
return 16000, synthesised_speech
|
40 |
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in
|
45 |
-
[
|
46 |
-
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|
49 |
|
@@ -61,7 +55,7 @@ file_translate = gr.Interface(
|
|
61 |
fn=speech_to_speech_translation,
|
62 |
inputs=gr.Audio(source="upload", type="filepath"),
|
63 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
64 |
-
examples=[["./
|
65 |
title=title,
|
66 |
description=description,
|
67 |
)
|
@@ -69,4 +63,4 @@ file_translate = gr.Interface(
|
|
69 |
with demo:
|
70 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
|
72 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
|
|
|
|
4 |
|
5 |
+
from transformers import AutoTokenizer, VitsModel
|
6 |
+
from transformers import pipeline
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
+
# Translate audio to russian text
|
11 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device)
|
12 |
+
translator_to_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def translate(audio, translator_to_ru: pipeline = translator_to_ru):
|
|
|
|
|
|
|
|
|
15 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
16 |
+
return translator_to_ru(outputs['text'])[0]['translation_text']
|
17 |
|
18 |
+
# Text to russian speech
|
19 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")
|
21 |
|
22 |
+
def synthesise(text: str, tokenizer: AutoTokenizer = tokenizer, model: VitsModel = model):
|
23 |
+
inputs = tokenizer(text, return_tensors="pt")
|
24 |
+
# print(inputs)
|
25 |
+
with torch.no_grad():
|
26 |
+
output = model(**inputs).waveform
|
27 |
+
return output.cpu()
|
28 |
|
29 |
|
30 |
def speech_to_speech_translation(audio):
|
31 |
translated_text = translate(audio)
|
32 |
synthesised_speech = synthesise(translated_text)
|
33 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
34 |
+
return 16000, synthesised_speech[0]
|
35 |
|
36 |
|
37 |
title = "Cascaded STST"
|
38 |
description = """
|
39 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in multi language to target speech in Russian. Demo uses OpenAI's [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) model for speech translation, and Facebook's
|
40 |
+
[mms-tts-rus](https://huggingface.co/acebook/mms-tts-rus) model for text-to-speech:
|
|
|
41 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
42 |
"""
|
43 |
|
|
|
55 |
fn=speech_to_speech_translation,
|
56 |
inputs=gr.Audio(source="upload", type="filepath"),
|
57 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
58 |
+
examples=[["./test_2.wav"]],
|
59 |
title=title,
|
60 |
description=description,
|
61 |
)
|
|
|
63 |
with demo:
|
64 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
65 |
|
66 |
+
demo.launch()
|