vladelesin commited on
Commit
7aec40a
1 Parent(s): dbfdf1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -27
app.py CHANGED
@@ -1,49 +1,43 @@
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
- from datasets import load_dataset
5
-
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
 
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
- # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
-
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
-
23
-
24
- def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
- return outputs["text"]
27
 
 
 
 
28
 
29
- def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
- return 16000, synthesised_speech
40
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
@@ -61,7 +55,7 @@ file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
  inputs=gr.Audio(source="upload", type="filepath"),
63
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
- examples=[["./example.wav"]],
65
  title=title,
66
  description=description,
67
  )
@@ -69,4 +63,4 @@ file_translate = gr.Interface(
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
 
 
 
4
 
5
+ from transformers import AutoTokenizer, VitsModel
6
+ from transformers import pipeline
7
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
 
10
+ # Translate audio to russian text
11
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device)
12
+ translator_to_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
 
 
 
 
 
13
 
14
+ def translate(audio, translator_to_ru: pipeline = translator_to_ru):
 
 
 
 
15
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
16
+ return translator_to_ru(outputs['text'])[0]['translation_text']
17
 
18
+ # Text to russian speech
19
+ model = VitsModel.from_pretrained("facebook/mms-tts-rus")
20
+ tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")
21
 
22
+ def synthesise(text: str, tokenizer: AutoTokenizer = tokenizer, model: VitsModel = model):
23
+ inputs = tokenizer(text, return_tensors="pt")
24
+ # print(inputs)
25
+ with torch.no_grad():
26
+ output = model(**inputs).waveform
27
+ return output.cpu()
28
 
29
 
30
  def speech_to_speech_translation(audio):
31
  translated_text = translate(audio)
32
  synthesised_speech = synthesise(translated_text)
33
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
34
+ return 16000, synthesised_speech[0]
35
 
36
 
37
  title = "Cascaded STST"
38
  description = """
39
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in multi language to target speech in Russian. Demo uses OpenAI's [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) model for speech translation, and Facebook's
40
+ [mms-tts-rus](https://huggingface.co/acebook/mms-tts-rus) model for text-to-speech:
 
41
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
42
  """
43
 
 
55
  fn=speech_to_speech_translation,
56
  inputs=gr.Audio(source="upload", type="filepath"),
57
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
58
+ examples=[["./test_2.wav"]],
59
  title=title,
60
  description=description,
61
  )
 
63
  with demo:
64
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
65
 
66
+ demo.launch()