Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,282 Bytes
7bd6e67 4cbd18d 79a49f5 7bd6e67 4cbd18d 119fcb8 79a49f5 205ebd7 4cbd18d 79a49f5 4cbd18d 205ebd7 4cbd18d 205ebd7 7bd6e67 3bc6adc 7bd6e67 3bc6adc 7bd6e67 df914b7 7bd6e67 06dfd60 7bd6e67 df914b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, AwqConfig
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
ACCESS_TOKEN = os.getenv("HF_TOKEN", "")
model_id = "hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4"
quantization_config = AwqConfig(
bits=4,
fuse_max_seq_len=512, # Note: Update this as per your use-case
do_fuse=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
quantization_config=quantization_config,
token=ACCESS_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True,
token=ACCESS_TOKEN)
tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.01,
top_p: float = 0.01,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
streamer = TextIteratorStreamer(tokenizer, timeout=300.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
eos_token_id=terminators,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(lines=2, placeholder="Prompt", label="Prompt"),
],
outputs="text",
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.01,
value=0.01,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.01,
value=0.01,
),
],
title="Model testing",
description="Provide system settings and a prompt to interact with the model.",
)
chat_interface.queue(max_size=20).launch()
|