sysprompt / app.py
vmuchinov's picture
Update app.py
9f304f1 verified
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
ACCESS_TOKEN = os.getenv("HF_TOKEN", "")
model_id = "HuggingFaceTB/SmolLM-1.7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
token=ACCESS_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True,
token=ACCESS_TOKEN)
tokenizer.use_default_system_prompt = False
model.config.gradient_checkpointing = True
@spaces.GPU
def generate(
message: str,
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.01,
top_p: float = 1.00,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
'''
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
'''
streamer = TextIteratorStreamer(tokenizer, timeout=600.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
#eos_token_id=terminators,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_beams=1,
pad_token_id=tokenizer.eos_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(lines=2, placeholder="Prompt", label="Prompt"),
],
outputs="text",
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.01,
value=0.01,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.01,
value=1.0,
),
],
title="Model testing - HuggingFaceTB/SmolLM-1.7B-Instruct",
description="Provide system settings and a prompt to interact with the model.",
)
chat_interface.queue(max_size=20).launch()