import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) ACCESS_TOKEN = os.getenv("HF_TOKEN", "") model_id = "meta-llama/Llama-2-13b-chat" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, token=ACCESS_TOKEN) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True, token=ACCESS_TOKEN) tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.01, top_p: float = 0.01, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] streamer = TextIteratorStreamer(tokenizer, timeout=300.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, eos_token_id=terminators, do_sample=True, top_p=top_p, temperature=temperature, num_beams=1, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.Interface( fn=generate, inputs=[ gr.Textbox(lines=2, placeholder="Prompt", label="Prompt"), ], outputs="text", additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.01, value=0.01, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.01, value=0.01, ), ], title="Model testing", description="Provide system settings and a prompt to interact with the model.", ) chat_interface.queue(max_size=20).launch()