File size: 9,043 Bytes
dd78229
 
 
 
 
 
 
 
 
 
f3c703d
dd78229
bb0d0b7
 
d05fd36
8490416
2762176
dd78229
145962d
2762176
d429324
 
 
 
 
dd78229
145962d
88a4add
 
 
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada80e8
e78cfd3
9e9b470
 
 
 
ada80e8
 
dd78229
8f3efc0
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fefce99
 
 
 
 
 
dd78229
 
 
 
 
 
 
 
 
 
6b106ff
dd78229
 
 
 
 
 
 
 
 
 
02b6361
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
525f14a
dd78229
 
 
 
02b6361
 
 
 
 
dd78229
 
2762176
435cc18
 
2762176
 
c6898bc
 
 
435cc18
 
 
 
dd78229
 
004843f
d429324
ad1f0d8
d429324
dd78229
 
 
 
 
 
 
 
 
004843f
 
bad7981
004843f
 
5891d84
004843f
dd78229
 
61107f7
 
d37387f
03d409b
d37387f
 
 
 
 
 
 
 
 
 
 
 
 
05b2555
 
38e940d
 
81ad5a8
38e940d
 
 
 
 
f45cfdd
2f0e061
 
 
 
 
 
 
f45cfdd
 
 
 
 
 
 
 
d37387f
03d409b
 
ff9b5a2
03d409b
 
ff9b5a2
dd78229
486389f
2053abc
 
486389f
 
8490416
20f349a
 
 
dd78229
d960b9d
769fe72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
import numpy as np
import requests
import torch
import yaml
from PIL import Image
from segmenter_model import utils
from segmenter_model.factory import create_segmenter
from segmenter_model.fpn_picie import PanopticFPN
from segmenter_model.utils import colorize_one, map2cs
from torchvision import transforms

# WEIGHTS = './weights/segmenter.pth
WEIGHTS = './weights/segmenter_nusc.pth'
FULL = True
CACHE = True
ALPHA = 0.5


def blend_images(bg, fg, alpha=ALPHA):
    fg = fg.convert('RGBA')
    bg = bg.convert('RGBA')
    blended = Image.blend(bg, fg, alpha=alpha)

    return blended


def download_file_from_google_drive(destination=WEIGHTS):
    id = '1v6_d2KHzRROsjb_cgxU7jvmnGVDXeBia'

    def get_confirm_token(response):
        for key, value in response.cookies.items():
            if key.startswith('download_warning'):
                return value

        return None

    def save_response_content(response, destination):
        CHUNK_SIZE = 32768

        with open(destination, "wb") as f:
            for chunk in response.iter_content(CHUNK_SIZE):
                if chunk:  # filter out keep-alive new chunks
                    f.write(chunk)

    URL = "https://docs.google.com/uc?export=download"

    session = requests.Session()

    response = session.get(URL, params={'id': id}, stream=True)
    token = get_confirm_token(response)

    if token:
        params = {'id': id, 'confirm': token}
        response = session.get(URL, params=params, stream=True)

    save_response_content(response, destination)


def download_weights():
    print('Downloading weights...')
    # if not os.path.exists(WEIGHTS):
    url = 'https://data.ciirc.cvut.cz/public/projects/2022DriveAndSegment/segmenter_nusc.pth'
    import urllib.request
    urllib.request.urlretrieve(url, WEIGHTS)


def segment_segmenter(image, model, window_size, window_stride, encoder_features=False, decoder_features=False,
                      no_upsample=False, batch_size=1):
    seg_pred = utils.inference(
        model,
        image,
        image.shape[-2:],
        window_size,
        window_stride,
        batch_size=batch_size,
        no_upsample=no_upsample,
        encoder_features=encoder_features,
        decoder_features=decoder_features
    )
    if not (encoder_features or decoder_features):
        seg_pred = seg_pred.argmax(1).unsqueeze(1)
    return seg_pred


def remap(seg_pred, ignore=255):
    if 'nusc' in WEIGHTS.lower():
        mapping = {0: 0, 13: 1, 2: 2, 7: 3, 17: 4, 20: 5, 8: 6, 12: 7, 26: 8, 14: 9, 22: 10, 11: 11, 6: 12, 27: 13,
                   10: 14, 19: 15, 24: 16, 9: 17, 4: 18}
    else:
        mapping = {0: 0, 12: 1, 15: 2, 23: 3, 10: 4, 14: 5, 18: 6, 2: 7, 17: 8, 13: 9, 8: 10, 3: 11, 27: 12, 4: 13,
                   25: 14, 24: 15, 6: 16, 22: 17, 28: 18}
    h, w = seg_pred.shape[-2:]
    seg_pred_remap = np.ones((h, w), dtype=np.uint8) * ignore
    for pseudo, gt in mapping.items():
        whr = seg_pred == pseudo
        seg_pred_remap[whr] = gt
    return seg_pred_remap


def create_model(resnet=False):
    weights_path = WEIGHTS
    variant_path = '{}_variant{}.yml'.format(weights_path, '_full' if FULL else '')

    print('Use weights {}'.format(weights_path))
    print('Load variant from {}'.format(variant_path))
    variant = yaml.load(
        open(variant_path, "r"), Loader=yaml.FullLoader
    )

    # TODO: parse hyperparameters
    window_size = variant['inference_kwargs']["window_size"]
    window_stride = variant['inference_kwargs']["window_stride"]
    im_size = variant['inference_kwargs']["im_size"]

    net_kwargs = variant["net_kwargs"]
    if not resnet:
        net_kwargs['decoder']['dropout'] = 0.

    # TODO: create model
    if resnet:
        model = PanopticFPN(arch=net_kwargs['backbone'], pretrain=net_kwargs['pretrain'], n_cls=net_kwargs['n_cls'])
    else:
        model = create_segmenter(net_kwargs)

    # TODO: load weights
    print('Load weights from {}'.format(weights_path))
    weights = torch.load(weights_path, map_location=torch.device('cpu'))['model']
    model.load_state_dict(weights, strict=True)

    model.eval()

    return model, window_size, window_stride, im_size


download_weights()
model, window_size, window_stride, im_size = create_model()


def get_transformations(input_img):
    trans_list = [transforms.ToTensor()]

    shorter_input_size = min(input_img.size)

    # if im_size != 1024 or shorter_input_size < im_size:
    #     trans_list.append(transforms.Resize(im_size))
    trans_list.append(transforms.Resize(im_size))

    trans_list.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))

    return transforms.Compose(trans_list)


def predict(input_img):
    input_img_pil = Image.open(input_img)
    transform = get_transformations(input_img_pil)
    input_img = transform(input_img_pil)
    input_img = torch.unsqueeze(input_img, 0)

    with torch.no_grad():
        segmentation = segment_segmenter(input_img, model, window_size, window_stride).squeeze().detach()
        segmentation_remap = remap(segmentation)

    drawing_pseudo = colorize_one(segmentation_remap)
    drawing_cs = map2cs(segmentation_remap)

    drawing_cs = transforms.ToPILImage()(drawing_cs).resize(input_img_pil.size)
    drawing_blend_cs = blend_images(input_img_pil, drawing_cs)

    drawing_pseudo = transforms.ToPILImage()(drawing_pseudo).resize(input_img_pil.size)
    drawing_blend_pseudo = blend_images(input_img_pil, drawing_pseudo)

    return drawing_blend_pseudo, drawing_blend_cs


title = 'Drive&Segment'
description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"\nBecause of the CPU-only inference, it might take up to 20s for large images.\nRight now, it uses the Segmenter model trained on nuScenes and with a simplified inference scheme (for the sake of speed). Please see description below the app for more details.'
# article = "<p style='text-align: center'><a href='https://vobecant.github.io/DriveAndSegment/' target='_blank'>Project Page</a> | <a href='https://github.com/vobecant/DriveAndSegment' target='_blank'>Github</a></p>"
article = """
<h1 align="center">🚙📷 Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation</h1>

## 💫 Highlights

- 🚫🔬 **Unsupervised semantic segmentation:** Drive&Segments proposes learning semantic segmentation in urban scenes without any manual annotation, just from
the raw non-curated data collected by cars which, equipped with 📷 cameras and 💥 LiDAR sensors.
- 📷💥 **Multi-modal training:** During the train time our method takes 📷 images and 💥 LiDAR scans as an input, and
  learns a semantic segmentation model *without using manual annotations*.
- 📷 **Image-only inference:** During the inference time, Drive&Segments takes *only images* as an input.
- 🏆 **State-of-the-art performance:** Our best single model based on Segmenter architecture achieves **21.8%** in mIoU on
  Cityscapes (without any fine-tuning).


"""
# ![teaser](https://drive.google.com/uc?export=view&id=1MkQmAfBPUomJDUikLhM_Wk8VUNekPb91)
# <h2 align="center">
#   <a href="https://vobecant.github.io/DriveAndSegment">project page</a> |
#   <a href="http://arxiv.org/abs/2203.11160">arXiv</a> |
#   <a href="https://huggingface.co/spaces/vobecant/DaS">Gradio</a> |
#   <a href="https://colab.research.google.com/drive/126tBVYbt1s0STyv8DKhmLoHKpvWcv33H?usp=sharing">Colab</a> |
#   <a href="https://www.youtube.com/watch?v=B9LK-Fxu7ao">video</a> 
# </h2>

# description += """
# ## 📺 Examples
#
# ### **Pseudo** segmentation.
#
# Example of **pseudo** segmentation.
#
# ![](https://drive.google.com/uc?export=view&id=1n27_zAMBAc2e8hEzh5FTDNM-V6zKAE4p)
# ### Cityscapes segmentation.
#
# Two examples of pseudo segmentation mapped to the 19 ground-truth classes of the Cityscapes dataset by using Hungarian
# algorithm.
#
# ![](https://drive.google.com/uc?export=view&id=1vHF2DugjXr4FdXX3gW65GRPArNL5urEH)
# ![](https://drive.google.com/uc?export=view&id=1WI_5lmF_YoVFXdWDnPT29rhPnlylh7QV)
# """

examples = [  # 'examples/img5.jpeg',
    'examples/100.jpeg',
    # 'examples/39076.jpeg',
    'examples/img1.jpg',
    'examples/snow1.jpg']
examples += ['examples/cs{}.jpg'.format(i) for i in range(3, 5)]

iface = gr.Interface(predict, inputs=gr.Image(type='filepath'), title=title, description=description,
                     article=article,
                     # theme='dark',
                     outputs=[gr.Image(label="Pseudo segmentation", type="pil"),
                              gr.Image(label="Mapping to Cityscapes", type="pil")],
                     examples=examples, cache_examples=CACHE)
# iface = gr.Interface(predict, gr.inputs.Image(type='filepath'),
#                      "image", title=title, description=description,
#                      examples=examples)

# iface.launch(show_error=True, share=True)
iface.launch(enable_queue=True, inline=True)