DaS / app.py
vobecant
Initial commit.
d960b9d
raw
history blame
6.3 kB
import gradio as gr
import numpy as np
import requests
import torch
import yaml
from PIL import Image
from torchvision import transforms
from segmenter_model import utils
from segmenter_model.factory import create_segmenter
from segmenter_model.fpn_picie import PanopticFPN
from segmenter_model.utils import colorize_one, map2cs
# WEIGHTS = './weights/segmenter.pth
WEIGHTS = './weights/segmenter_nusc.pth'
def blend_images(bg, fg, alpha=0.3):
fg = fg.convert('RGBA')
bg = bg.convert('RGBA')
blended = Image.blend(bg, fg, alpha=alpha)
return blended
def download_file_from_google_drive(destination=WEIGHTS):
id = '1v6_d2KHzRROsjb_cgxU7jvmnGVDXeBia'
def get_confirm_token(response):
for key, value in response.cookies.items():
if key.startswith('download_warning'):
return value
return None
def save_response_content(response, destination):
CHUNK_SIZE = 32768
with open(destination, "wb") as f:
for chunk in response.iter_content(CHUNK_SIZE):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
URL = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params={'id': id}, stream=True)
token = get_confirm_token(response)
if token:
params = {'id': id, 'confirm': token}
response = session.get(URL, params=params, stream=True)
save_response_content(response, destination)
def download_weights():
# if not os.path.exists(WEIGHTS):
url = 'https://data.ciirc.cvut.cz/public/projects/2022DriveAndSegment/segmenter_nusc.pth'
import urllib.request
urllib.request.urlretrieve(url, WEIGHTS)
def segment_segmenter(image, model, window_size, window_stride, encoder_features=False, decoder_features=False,
no_upsample=False, batch_size=1):
seg_pred = utils.inference(
model,
image,
image.shape[-2:],
window_size,
window_stride,
batch_size=batch_size,
no_upsample=no_upsample,
encoder_features=encoder_features,
decoder_features=decoder_features
)
if not (encoder_features or decoder_features):
seg_pred = seg_pred.argmax(1).unsqueeze(1)
return seg_pred
def remap(seg_pred, ignore=255):
if 'nusc' in WEIGHTS.lower():
mapping = {0: 0, 13: 1, 2: 2, 7: 3, 17: 4, 20: 5, 8: 6, 12: 7, 26: 8, 14: 9, 22: 10, 11: 11, 6: 12, 27: 13,
10: 14, 19: 15, 24: 16, 9: 17, 4: 18}
else:
mapping = {0: 0, 12: 1, 15: 2, 23: 3, 10: 4, 14: 5, 18: 6, 2: 7, 17: 8, 13: 9, 8: 10, 3: 11, 27: 12, 4: 13,
25: 14, 24: 15, 6: 16, 22: 17, 28: 18}
h, w = seg_pred.shape[-2:]
seg_pred_remap = np.ones((h, w), dtype=np.uint8) * ignore
for pseudo, gt in mapping.items():
whr = seg_pred == pseudo
seg_pred_remap[whr] = gt
return seg_pred_remap
def create_model(resnet=False):
weights_path = WEIGHTS
variant_path = '{}_variant.yml'.format(weights_path)
print('Use weights {}'.format(weights_path))
print('Load variant from {}'.format(variant_path))
variant = yaml.load(
open(variant_path, "r"), Loader=yaml.FullLoader
)
# TODO: parse hyperparameters
window_size = variant['inference_kwargs']["window_size"]
window_stride = variant['inference_kwargs']["window_stride"]
im_size = variant['inference_kwargs']["im_size"]
net_kwargs = variant["net_kwargs"]
if not resnet:
net_kwargs['decoder']['dropout'] = 0.
# TODO: create model
if resnet:
model = PanopticFPN(arch=net_kwargs['backbone'], pretrain=net_kwargs['pretrain'], n_cls=net_kwargs['n_cls'])
else:
model = create_segmenter(net_kwargs)
# TODO: load weights
print('Load weights from {}'.format(weights_path))
weights = torch.load(weights_path, map_location=torch.device('cpu'))['model']
model.load_state_dict(weights, strict=True)
model.eval()
return model, window_size, window_stride, im_size
download_weights()
model, window_size, window_stride, im_size = create_model()
def get_transformations():
return transforms.Compose([
transforms.ToTensor(),
transforms.Resize(im_size),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
def predict(input_img, cs_mapping):
input_img_pil = Image.open(input_img)
transform = get_transformations()
input_img = transform(input_img_pil)
input_img = torch.unsqueeze(input_img, 0)
print('Loaded and prepaded image.')
with torch.no_grad():
segmentation = segment_segmenter(input_img, model, window_size, window_stride).squeeze().detach()
print('Segmented image.')
segmentation_remap = remap(segmentation)
print('Remapped image.')
drawing_pseudo = colorize_one(segmentation_remap)
print('Pseudo colors done.')
drawing_cs = map2cs(segmentation_remap)
print('CS colors done.')
# drawing_pseudo = transforms.ToPILImage()(drawing_pseudo)
drawing_cs = transforms.ToPILImage()(drawing_cs).resize(input_img_pil.size)
drawing_cs_blend = blend_images(input_img_pil, drawing_cs)
if cs_mapping:
drawing = drawing_cs
else:
drawing = drawing_pseudo
return drawing
title = "Drive&Segment"
description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"\nBecause of the CPU-only inference, it might take up to 20s for large images.\nRight now, I use the Segmenter model trained on nuScenes and with 256x256 patches (for the sake of speed).'
# article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
examples = ['examples/img5.jpeg', 'examples/100.jpeg', 'examples/39076.jpeg', 'examples/img1.jpg']
# predict(examples[0])
iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'), gr.inputs.Checkbox(label="Cityscapes mapping")],
"image", title=title, description=description,
examples=[examples, []])
# iface.launch(show_error=True, share=True)
iface.launch(show_error=True)