|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Mostly copy-paste from timm library. |
|
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py |
|
""" |
|
import math |
|
import warnings |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False): |
|
if drop_prob == 0. or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
output = x.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x, attn |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
def forward(self, x, return_attention=False): |
|
y, attn = self.attn(self.norm1(x)) |
|
if return_attention: |
|
return attn |
|
x = x + self.drop_path(y) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
num_patches = (img_size // patch_size) * (img_size // patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
""" Vision Transformer """ |
|
|
|
def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, |
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., |
|
drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs): |
|
super().__init__() |
|
self.num_features = self.embed_dim = embed_dim |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
|
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def interpolate_pos_encoding(self, x, w, h): |
|
npatch = x.shape[1] - 1 |
|
N = self.pos_embed.shape[1] - 1 |
|
if npatch == N and w == h: |
|
return self.pos_embed |
|
class_pos_embed = self.pos_embed[:, 0] |
|
patch_pos_embed = self.pos_embed[:, 1:] |
|
dim = x.shape[-1] |
|
w0 = w // self.patch_embed.patch_size |
|
h0 = h // self.patch_embed.patch_size |
|
|
|
|
|
w0, h0 = w0 + 0.1, h0 + 0.1 |
|
patch_pos_embed = nn.functional.interpolate( |
|
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), |
|
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), |
|
mode='bicubic', |
|
) |
|
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] |
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) |
|
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) |
|
|
|
def prepare_tokens(self, x): |
|
B, nc, w, h = x.shape |
|
x = self.patch_embed(x) |
|
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
x = x + self.interpolate_pos_encoding(x, w, h) |
|
|
|
return self.pos_drop(x) |
|
|
|
def forward(self, x): |
|
x = self.prepare_tokens(x) |
|
for blk in self.blocks: |
|
x = blk(x) |
|
x = self.norm(x) |
|
return x[:, 0] |
|
|
|
def get_last_selfattention(self, x): |
|
x = self.prepare_tokens(x) |
|
for i, blk in enumerate(self.blocks): |
|
if i < len(self.blocks) - 1: |
|
x = blk(x) |
|
else: |
|
|
|
return blk(x, return_attention=True) |
|
|
|
def get_n_last_selfattentions(self, x, layers_from_end=(1)): |
|
x = self.prepare_tokens(x) |
|
attentions = [] |
|
for i, blk in enumerate(self.blocks): |
|
num_from_end = len(self.blocks) - i |
|
if num_from_end in layers_from_end: |
|
|
|
attn = blk(x, return_attention=True) |
|
attentions.append(attn) |
|
x = blk(x) |
|
return attentions |
|
|
|
def get_intermediate_layers(self, x, n=1): |
|
x = self.prepare_tokens(x) |
|
|
|
output = [] |
|
for i, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if len(self.blocks) - i <= n: |
|
output.append(self.norm(x)) |
|
return output |
|
|
|
|
|
def vit_tiny(patch_size=16, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |
|
|
|
|
|
def vit_small(patch_size=16, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |
|
|
|
|
|
def vit_base(patch_size=16, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |
|
|
|
|
|
class DINOHead(nn.Module): |
|
def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, |
|
bottleneck_dim=256): |
|
super().__init__() |
|
nlayers = max(nlayers, 1) |
|
if nlayers == 1: |
|
self.mlp = nn.Linear(in_dim, bottleneck_dim) |
|
else: |
|
layers = [nn.Linear(in_dim, hidden_dim)] |
|
if use_bn: |
|
layers.append(nn.BatchNorm1d(hidden_dim)) |
|
layers.append(nn.GELU()) |
|
for _ in range(nlayers - 2): |
|
layers.append(nn.Linear(hidden_dim, hidden_dim)) |
|
if use_bn: |
|
layers.append(nn.BatchNorm1d(hidden_dim)) |
|
layers.append(nn.GELU()) |
|
layers.append(nn.Linear(hidden_dim, bottleneck_dim)) |
|
self.mlp = nn.Sequential(*layers) |
|
self.apply(self._init_weights) |
|
self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) |
|
self.last_layer.weight_g.data.fill_(1) |
|
if norm_last_layer: |
|
self.last_layer.weight_g.requires_grad = False |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
x = self.mlp(x) |
|
x = nn.functional.normalize(x, dim=-1, p=2) |
|
x = self.last_layer(x) |
|
return x |
|
|