from pathlib import Path import yaml import torch import math import os import torch.nn as nn from timm.models.helpers import load_pretrained, load_custom_pretrained from timm.models.vision_transformer import default_cfgs, checkpoint_filter_fn from timm.models.registry import register_model from timm.models.vision_transformer import _create_vision_transformer from segmenter_model.decoder import MaskTransformer from segmenter_model.segmenter import Segmenter import segmenter_model.torch as ptu from segmenter_model.vit_dino import vit_small, VisionTransformer @register_model def vit_base_patch8_384(pretrained=False, **kwargs): """ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer( "vit_base_patch8_384", pretrained=pretrained, default_cfg=dict( url="", input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=1000, ), **model_kwargs, ) return model def create_vit(model_cfg): model_cfg = model_cfg.copy() backbone = model_cfg.pop("backbone") if 'pretrained_weights' in model_cfg: pretrained_weights = model_cfg.pop('pretrained_weights') if 'dino' in backbone: if backbone.lower() == 'dino_vits16': model_cfg['drop_rate'] = model_cfg['dropout'] model = vit_small(**model_cfg) # hard-coded for now, too lazy ciirc_path = '/home/vobecant/PhD/weights/dino/dino_deitsmall16_pretrain.pth' karolina_path = '/scratch/project/dd-21-20/pretrained_weights/dino/dino_deitsmall16_pretrain.pth' if os.path.exists(ciirc_path): pretrained_weights = ciirc_path elif os.path.exists(karolina_path): pretrained_weights = karolina_path else: raise Exception('DINO weights not found!') model.load_state_dict(torch.load(pretrained_weights), strict=True) else: model = torch.hub.load('facebookresearch/dino:main', backbone) setattr(model, 'd_model', model.num_features) setattr(model, 'patch_size', model.patch_embed.patch_size) setattr(model, 'distilled', False) model.forward = lambda x, return_features: model.get_intermediate_layers(x, n=1)[0] else: normalization = model_cfg.pop("normalization") model_cfg["n_cls"] = 1000 mlp_expansion_ratio = 4 model_cfg["d_ff"] = mlp_expansion_ratio * model_cfg["d_model"] if backbone in default_cfgs: default_cfg = default_cfgs[backbone] else: default_cfg = dict( pretrained=False, num_classes=1000, drop_rate=0.0, drop_path_rate=0.0, drop_block_rate=None, ) default_cfg["input_size"] = ( 3, model_cfg["image_size"][0], model_cfg["image_size"][1], ) model = VisionTransformer(**model_cfg) if backbone == "vit_base_patch8_384": path = os.path.expandvars("/home/vobecant/PhD/weights/vit_base_patch8_384.pth") state_dict = torch.load(path, map_location="cpu") filtered_dict = checkpoint_filter_fn(state_dict, model) model.load_state_dict(filtered_dict, strict=True) elif "deit" in backbone: load_pretrained(model, default_cfg, filter_fn=checkpoint_filter_fn) else: load_custom_pretrained(model, default_cfg) return model def create_decoder(encoder, decoder_cfg): decoder_cfg = decoder_cfg.copy() name = decoder_cfg.pop("name") decoder_cfg["d_encoder"] = encoder.d_model decoder_cfg["patch_size"] = encoder.patch_size if "linear" in name: decoder = DecoderLinear(**decoder_cfg) elif name == "mask_transformer": dim = encoder.d_model n_heads = dim // 64 decoder_cfg["n_heads"] = n_heads decoder_cfg["d_model"] = dim decoder_cfg["d_ff"] = 4 * dim decoder = MaskTransformer(**decoder_cfg) elif 'deeplab' in name: decoder = DeepLabHead(in_channels=encoder.d_model, num_classes=decoder_cfg["n_cls"], patch_size=decoder_cfg["patch_size"]) else: raise ValueError(f"Unknown decoder: {name}") return decoder def create_segmenter(model_cfg): model_cfg = model_cfg.copy() decoder_cfg = model_cfg.pop("decoder") decoder_cfg["n_cls"] = model_cfg["n_cls"] if 'weights_path' in model_cfg.keys(): weights_path = model_cfg.pop('weights_path') else: weights_path = None encoder = create_vit(model_cfg) decoder = create_decoder(encoder, decoder_cfg) model = Segmenter(encoder, decoder, n_cls=model_cfg["n_cls"]) if weights_path is not None: raise Exception('Wants to load weights to the complete segmenter insice create_segmenter method!') state_dict = torch.load(weights_path, map_location="cpu") if 'model' in state_dict: state_dict = state_dict['model'] msg = model.load_state_dict(state_dict, strict=False) print(msg) return model def load_model(model_path, decoder_only=False, variant_path=None): variant_path = Path(model_path).parent / "variant.yml" if variant_path is None else variant_path with open(variant_path, "r") as f: variant = yaml.load(f, Loader=yaml.FullLoader) net_kwargs = variant["net_kwargs"] model = create_segmenter(net_kwargs) data = torch.load(model_path, map_location=ptu.device) checkpoint = data["model"] if decoder_only: model.decoder.load_state_dict(checkpoint, strict=True) else: model.load_state_dict(checkpoint, strict=True) return model, variant