from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" repo_id = "vop020506/entregable3" learner = from_pretrained_fastai(repo_id) labels = ['admiration','amusement', 'anger', 'annoyance', 'approval', 'caring','confusion','curiosity','desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization','relief', 'remorse', 'sadness', 'surprise', 'neutral'] # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(text): #img = PILImage.create(img) pred,pred_idx,probs = learner.predict(text) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=False)