import streamlit as st import pandas as pd import numpy as np import re from PIL import Image import webbrowser import json import pickle import sys import joblib import sys sys.path.append('./CC/') import chemaxon from chemaxon import * from compound import Compound from compound_cacher import CompoundCacher from rdkit.Chem import rdChemReactions as Reactions from rdkit.Chem import Draw from rdkit import Chem @st.cache(allow_output_mutation=True) def load_smiles(): db = pd.read_csv('./data/cache_compounds_20160818.csv', index_col='compound_id') db_smiles = db['smiles_pH7'].to_dict() return db_smiles @st.cache(allow_output_mutation=True) def load_molsig_rad1(): molecular_signature_r1 = json.load(open('./data/decompose_vector_ac.json')) return molecular_signature_r1 @st.cache(allow_output_mutation=True) def load_molsig_rad2(): molecular_signature_r2 = json.load( open('./data/decompose_vector_ac_r2_py3_indent_modified_manual.json')) return molecular_signature_r2 @st.cache(allow_output_mutation=True) def load_model(): filename = './model/M12_model_BR.pkl' loaded_model = joblib.load(open(filename, 'rb')) return loaded_model @st.cache(allow_output_mutation=True) def load_compound_cache(): ccache = CompoundCacher() return ccache def count_substructures(radius, molecule): """Helper function for get the information of molecular signature of a metabolite. The relaxed signature requires the number of each substructure to construct a matrix for each molecule. Parameters ---------- radius : int the radius is bond-distance that defines how many neighbor atoms should be considered in a reaction center. molecule : Molecule a molecule object create by RDkit (e.g. Chem.MolFromInchi(inchi_code) or Chem.MolToSmiles(smiles_code)) Returns ------- dict dictionary of molecular signature for a molecule, {smiles: molecular_signature} """ m = molecule smi_count = dict() atomList = [atom for atom in m.GetAtoms()] for i in range(len(atomList)): env = Chem.FindAtomEnvironmentOfRadiusN(m, radius, i) atoms = set() for bidx in env: atoms.add(m.GetBondWithIdx(bidx).GetBeginAtomIdx()) atoms.add(m.GetBondWithIdx(bidx).GetEndAtomIdx()) # only one atom is in this environment, such as O in H2O if len(atoms) == 0: atoms = {i} smi = Chem.MolFragmentToSmiles(m, atomsToUse=list(atoms), bondsToUse=env, canonical=True) if smi in smi_count: smi_count[smi] = smi_count[smi] + 1 else: smi_count[smi] = 1 return smi_count def decompse_novel_mets_rad1(novel_smiles, radius=1): decompose_vector = dict() for cid, smiles_pH7 in novel_smiles.items(): mol = Chem.MolFromSmiles(smiles_pH7) mol = Chem.RemoveHs(mol) # Chem.RemoveStereochemistry(mol) smi_count = count_substructures(radius, mol) decompose_vector[cid] = smi_count return decompose_vector def decompse_novel_mets_rad2(novel_smiles, radius=2): decompose_vector = dict() for cid, smiles_pH7 in novel_smiles.items(): mol = Chem.MolFromSmiles(smiles_pH7) mol = Chem.RemoveHs(mol) # Chem.RemoveStereochemistry(mol) smi_count = count_substructures(radius, mol) decompose_vector[cid] = smi_count return decompose_vector # def parse_rule(rxn,df_rule): # df = df_rule # rule_df = df[rxn].to_frame() # # new_df = rule_df[(rule_df.T != 0).any()] # return rule_df[(rule_df.T != 0).any()] def parse_reaction_formula_side(s): """ Parses the side formula, e.g. '2 C00001 + C00002 + 3 C00003' Ignores stoichiometry. Returns: The set of CIDs. """ if s.strip() == "null": return {} compound_bag = {} for member in re.split('\s+\+\s+', s): tokens = member.split(None, 1) if len(tokens) == 0: continue if len(tokens) == 1: amount = 1 key = member else: amount = float(tokens[0]) key = tokens[1] compound_bag[key] = compound_bag.get(key, 0) + amount return compound_bag def parse_formula(formula, arrow='<=>', rid=None): """ Parses a two-sided formula such as: 2 C00001 => C00002 + C00003 Return: The set of substrates, products and the direction of the reaction """ tokens = formula.split(arrow) if len(tokens) < 2: print(('Reaction does not contain the arrow sign (%s): %s' % (arrow, formula))) if len(tokens) > 2: print(('Reaction contains more than one arrow sign (%s): %s' % (arrow, formula))) left = tokens[0].strip() right = tokens[1].strip() sparse_reaction = {} for cid, count in parse_reaction_formula_side(left).items(): sparse_reaction[cid] = sparse_reaction.get(cid, 0) - count for cid, count in parse_reaction_formula_side(right).items(): sparse_reaction[cid] = sparse_reaction.get(cid, 0) + count return sparse_reaction def draw_rxn_figure(rxn_dict, db_smiles, novel_smiles): # db_smiles = load_smiles() left = '' right = '' for met, stoic in rxn_dict.items(): if met == "C00080" or met == "C00282": continue # hydogen is not considered if stoic > 0: if met in db_smiles: right = right + db_smiles[met] + '.' else: right = right + novel_smiles[met] + '.' else: if met in db_smiles: left = left + db_smiles[met] + '.' else: left = left + novel_smiles[met] + '.' smarts = left[:-1] + '>>' + right[:-1] # print smarts smarts = str(smarts) rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True) return Draw.ReactionToImage(rxn) # , subImgSize=(400, 400)) # def draw_group_changes(rxn,df_rule): # df = parse_rule(rxn,df_rule) # group_dict = df.to_dict()[rxn] # left = '' # right = '' # for smiles,stoic in group_dict.iteritems(): # if stoic > 0: # right = right + smiles + '.' # else: # left = left + smiles + '.' # smarts = left[:-1] + '>>' + right[:-1] # rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True) # return Draw.ReactionToImage(rxn) # def get_rxn_rule(rid): # reaction_dict = json.load(open('../data/optstoic_v3_Sji_dict.json')) # molecular_signature = json.load(open('../data/decompose_vector_ac.json')) # molsigna_df = pd.DataFrame.from_dict(molecular_signature).fillna(0) # all_mets = molsigna_df.columns.tolist() # all_mets.append("C00080") # all_mets.append("C00282") # rule_df = pd.DataFrame(index=molsigna_df.index) # info = reaction_dict[rid] # # skip the reactions with missing metabolites # mets = info.keys() # flag = False # for met in mets: # if met not in all_mets: # flag = True # break # if flag: # return None # rule_df[rid] = 0 # for met, stoic in info.items(): # if met == "C00080" or met == "C00282": # continue # hydogen is zero # rule_df[rid] += molsigna_df[met] * stoic # return rule_df def get_rule(rxn_dict, molsig1, molsig2, novel_decomposed1, novel_decomposed2): if novel_decomposed1 != None: for cid in novel_decomposed1: molsig1[cid] = novel_decomposed1[cid] if novel_decomposed2 != None: for cid in novel_decomposed2: molsig2[cid] = novel_decomposed2[cid] molsigna_df1 = pd.DataFrame.from_dict(molsig1).fillna(0) all_mets1 = molsigna_df1.columns.tolist() all_mets1.append("C00080") all_mets1.append("C00282") molsigna_df2 = pd.DataFrame.from_dict(molsig2).fillna(0) all_mets2 = molsigna_df2.columns.tolist() all_mets2.append("C00080") all_mets2.append("C00282") moieties_r1 = open('./data/group_names_r1.txt') moieties_r2 = open('./data/group_names_r2_py3_modified_manual.txt') moie_r1 = moieties_r1.read().splitlines() moie_r2 = moieties_r2.read().splitlines() molsigna_df1 = molsigna_df1.reindex(moie_r1) molsigna_df2 = molsigna_df2.reindex(moie_r2) rule_df1 = pd.DataFrame(index=molsigna_df1.index) rule_df2 = pd.DataFrame(index=molsigna_df2.index) # for rid, value in reaction_dict.items(): # # skip the reactions with missing metabolites # mets = value.keys() # flag = False # for met in mets: # if met not in all_mets: # flag = True # break # if flag: continue rule_df1['change'] = 0 for met, stoic in rxn_dict.items(): if met == "C00080" or met == "C00282": continue # hydogen is zero rule_df1['change'] += molsigna_df1[met] * stoic rule_df2['change'] = 0 for met, stoic in rxn_dict.items(): if met == "C00080" or met == "C00282": continue # hydogen is zero rule_df2['change'] += molsigna_df2[met] * stoic rule_vec1 = rule_df1.to_numpy().T rule_vec2 = rule_df2.to_numpy().T m1, n1 = rule_vec1.shape m2, n2 = rule_vec2.shape zeros1 = np.zeros((m1, 44)) zeros2 = np.zeros((m2, 44)) X1 = np.concatenate((rule_vec1, zeros1), 1) X2 = np.concatenate((rule_vec2, zeros2), 1) rule_comb = np.concatenate((X1, X2), 1) # rule_df_final = {} # rule_df_final['rad1'] = rule_df1 # rule_df_final['rad2'] = rule_df2 return rule_comb, rule_df1, rule_df2 def get_ddG0(rxn_dict, pH, I, novel_mets): ccache = CompoundCacher() # ddG0 = get_transform_ddG0(rxn_dict, ccache, pH, I, T) T = 298.15 ddG0_forward = 0 for compound_id, coeff in rxn_dict.items(): if novel_mets != None and compound_id in novel_mets: comp = novel_mets[compound_id] else: comp = ccache.get_compound(compound_id) ddG0_forward += coeff * comp.transform_pH7(pH, I, T) return ddG0_forward def get_dG0(rxn_dict, rid, pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets): # rule_df = get_rxn_rule(rid) rule_comb, rule_df1, rule_df2 = get_rule( rxn_dict, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2) X = rule_comb # X = X.reshape(1,-1) # pdb.set_trace() # print(np.shape(X1)) # print(np.shape(X2)) # print(np.shape(X)) ymean, ystd = loaded_model.predict(X, return_std=True) # print(ymean) # print(ystd) result = {} # result['dG0'] = ymean[0] + get_ddG0(rxn_dict, pH, I) # result['standard deviation'] = ystd[0] # result_df = pd.DataFrame([result]) # result_df.style.hide_index() # return result_df return ymean[0] + get_ddG0(rxn_dict, pH, I, novel_mets), ystd[0], rule_df1, rule_df2 # return ymean[0],ystd[0] def parse_novel_molecule(add_info): result = {} for cid, InChI in add_info.items(): c = Compound.from_inchi('Test', cid, InChI) result[cid] = c return result def parse_novel_smiles(result): novel_smiles = {} for cid, c in result.items(): smiles = c.smiles_pH7 novel_smiles[cid] = smiles return novel_smiles def main(): # def img_to_bytes(img_path): # img_bytes = Path(img_path).read_bytes() # encoded = base64.b64encode(img_bytes).decode() # return encoded # # st.title('dGPredictor') # header_html = "" # st.markdown( # header_html, unsafe_allow_html=True, # ) db_smiles = load_smiles() molsig_r1 = load_molsig_rad1() molsig_r2 = load_molsig_rad2() loaded_model = load_model() ccache = load_compound_cache() st.image('./figures/header.png', use_column_width=True) st.subheader('Reaction (please use KEGG IDs)') # rxn_str = st.text_input('Reaction using KEGG ids:', value='C16688 + C00001 <=> C00095 + C00092') rxn_str = st.text_input( '', value='C01745 + C00004 <=> N00001 + C00003 + C00001') # rxn_str = st.text_input('', value='C16688 + C00001 <=> C00095 + C00092') # url = 'https://www.genome.jp/dbget-bin/www_bget?rn:R00801' # if st.button('KEGG format example'): # webbrowser.open_new_tab(url) if st.checkbox('Reaction has metabolites not in KEGG'): # st.subheader('test') add_info = st.text_area('Additional information (id: InChI):', '{"N00001":"InChI=1S/C14H12O/c15-14-8-4-7-13(11-14)10-9-12-5-2-1-3-6-12/h1-11,15H/b10-9+"}') else: add_info = '{"None":"None"}' # session_state = SessionState.get(name="", button_sent=False) # button_search = st.button("Search") # if button_search: # session_state.button_search = True pH = st.slider('pH', min_value=0.0, max_value=14.0, value=7.0, step=0.1) I = st.slider('Ionic strength [M]', min_value=0.0, max_value=0.5, value=0.1, step=0.01) if st.button("Search"): # if session_state.button_search: st.subheader('Reaction Equation') st.write(rxn_str) with st.spinner('Searching...'): try: novel_mets = parse_novel_molecule(json.loads(add_info)) novel_smiles = parse_novel_smiles(novel_mets) novel_decomposed_r1 = decompse_novel_mets_rad1(novel_smiles) novel_decomposed_r2 = decompse_novel_mets_rad2(novel_smiles) except Exception as e: novel_mets = None novel_smiles = None novel_decomposed_r1 = None novel_decomposed_r2 = None # novel_smiles = json.loads(add_info) print(novel_smiles) rxn_dict = parse_formula(rxn_str) st.image(draw_rxn_figure(rxn_dict, db_smiles, novel_smiles), use_column_width=True) # st.text('Group changes:') # st.write(parse_rule('R03921')) # st.write(get_rxn_rule('R03921')) # session_state.calculate = st.button('Start Calculate!') # if session_state.calculate: # if st.button('Start Calculate!'): # st.text('Result:') st.subheader('Thermodynamics') with st.spinner('Calculating...'): mu, std, rule_df1, rule_df2 = get_dG0( rxn_dict, 'R00801', pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets) st.write(r"$\Delta_r G'^{o} = %.2f \pm %.2f \ kJ/mol$" % (mu, std)) st.text('Group changes:') st.write(rule_df1[(rule_df1.T != 0).any()]) st.write(rule_df2[(rule_df2.T != 0).any()]) if __name__ == '__main__': main()