File size: 11,356 Bytes
d24a68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35005eb
 
 
 
 
 
 
d24a68b
 
 
 
 
 
 
 
 
 
b624c42
 
 
 
 
 
 
d24a68b
 
 
 
 
 
d37849f
d24a68b
 
 
 
 
 
 
 
 
 
 
 
 
 
d37849f
d24a68b
 
d37849f
 
d24a68b
 
 
d37849f
d24a68b
 
 
 
 
 
 
 
35005eb
 
 
d24a68b
 
 
 
 
 
 
 
 
 
 
 
118c154
 
 
 
 
35005eb
118c154
35005eb
 
118c154
 
 
5819920
118c154
 
 
 
 
d24a68b
 
d37849f
35005eb
 
 
d24a68b
 
 
 
 
 
9c54d62
d37849f
 
d24a68b
 
 
d37849f
d24a68b
 
 
 
 
 
 
 
 
 
 
9c54d62
d24a68b
 
 
 
 
 
d37849f
35005eb
f575abd
 
35005eb
d24a68b
 
 
 
d37849f
d24a68b
 
 
 
 
 
 
 
 
 
 
 
 
118c154
 
 
d24a68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37849f
9c54d62
 
 
 
 
 
b624c42
 
 
 
 
 
 
d37849f
d24a68b
 
d37849f
d24a68b
 
d37849f
 
d24a68b
9c54d62
 
 
 
 
b624c42
 
 
 
 
 
 
 
9c54d62
d24a68b
 
 
 
d37849f
 
9c54d62
 
 
 
 
b624c42
 
9c54d62
 
 
b624c42
9c54d62
35005eb
d37849f
35005eb
 
 
d24a68b
 
 
 
 
 
 
 
 
 
1afe74a
d24a68b
 
 
 
d37849f
d24a68b
 
 
 
 
 
b624c42
9c54d62
 
 
 
 
 
 
d24a68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37849f
d24a68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37849f
 
 
d24a68b
 
 
 
 
 
 
 
 
 
118c154
 
d24a68b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# A unified script for inference process
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format

import re
import tempfile

import numpy as np
import torch
import torchaudio
import tqdm
from pydub import AudioSegment, silence
from transformers import pipeline
from vocos import Vocos

from model import CFM
from model.utils import (
    load_checkpoint,
    get_tokenizer,
    convert_char_to_pinyin,
)

# get device


def get_device():
    device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
    return device


vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")


# -----------------------------------------

target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
cross_fade_duration = 0.15
ode_method = "euler"
nfe_step = 32  # 16, 32
cfg_strength = 2.0
sway_sampling_coef = -1.0
speed = 1.0
fix_duration = None

# -----------------------------------------


# chunk text into smaller pieces


def chunk_text(text, max_chars=135):
    """
    Splits the input text into chunks, each with a maximum number of characters.

    Args:
        text (str): The text to be split.
        max_chars (int): The maximum number of characters per chunk.

    Returns:
        List[str]: A list of text chunks.
    """
    chunks = []
    current_chunk = ""
    # Split the text into sentences based on punctuation followed by whitespace
    sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text)

    for sentence in sentences:
        if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars:
            current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
        else:
            if current_chunk:
                chunks.append(current_chunk.strip())
            current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence

    if current_chunk:
        chunks.append(current_chunk.strip())

    return chunks


# load vocoder
def load_vocoder(is_local=False, local_path="", device=None):
    if device is None:
        device = get_device()
    if is_local:
        print(f"Load vocos from local path {local_path}")
        vocos = Vocos.from_hparams(f"{local_path}/config.yaml")
        state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location=device)
        vocos.load_state_dict(state_dict)
        vocos.eval()
    else:
        print("Download Vocos from huggingface charactr/vocos-mel-24khz")
        vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
    return vocos


# load asr pipeline

asr_pipe = None


def initialize_asr_pipeline(device=None):
    global asr_pipe
    if device is None:
        device = get_device()

    asr_pipe = pipeline(
        "automatic-speech-recognition",
        model="openai/whisper-large-v3-turbo",
        torch_dtype=torch.float16,
        device=device,
    )


# load model for inference


def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_method, use_ema=True, device=None):
    if device is None:
        device = get_device()
    if vocab_file == "":
        vocab_file = "Emilia_ZH_EN"
        tokenizer = "pinyin"
    else:
        tokenizer = "custom"

    print("\nvocab : ", vocab_file)
    print("tokenizer : ", tokenizer)
    print("model : ", ckpt_path, "\n")

    vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
    model = CFM(
        transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
        mel_spec_kwargs=dict(
            target_sample_rate=target_sample_rate,
            n_mel_channels=n_mel_channels,
            hop_length=hop_length,
        ),
        odeint_kwargs=dict(
            method=ode_method,
        ),
        vocab_char_map=vocab_char_map,
    ).to(device)

    model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)

    return model


# preprocess reference audio and text


def preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=print, device=None):
    if device is None:
        device = get_device()

    show_info("Converting audio...")
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        aseg = AudioSegment.from_file(ref_audio_orig)

        non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000)
        non_silent_wave = AudioSegment.silent(duration=0)
        for non_silent_seg in non_silent_segs:
            non_silent_wave += non_silent_seg
        aseg = non_silent_wave

        audio_duration = len(aseg)
        if audio_duration > 15000:
            show_info("Audio is over 15s, clipping to only first 15s.")
            aseg = aseg[:15000]
        aseg.export(f.name, format="wav")
        ref_audio = f.name

    if not ref_text.strip():
        global asr_pipe
        if asr_pipe is None:
            initialize_asr_pipeline(device=device)
        show_info("No reference text provided, transcribing reference audio...")
        ref_text = asr_pipe(
            ref_audio,
            chunk_length_s=30,
            batch_size=128,
            generate_kwargs={"task": "transcribe"},
            return_timestamps=False,
        )["text"].strip()
        show_info("Finished transcription")
    else:
        show_info("Using custom reference text...")

    # Add the functionality to ensure it ends with ". "
    if not ref_text.endswith(". ") and not ref_text.endswith("。"):
        if ref_text.endswith("."):
            ref_text += " "
        else:
            ref_text += ". "

    return ref_audio, ref_text


# infer process: chunk text -> infer batches [i.e. infer_batch_process()]


def infer_process(
    ref_audio,
    ref_text,
    gen_text,
    model_obj,
    show_info=print,
    progress=tqdm,
    target_rms=target_rms,
    cross_fade_duration=cross_fade_duration,
    nfe_step=nfe_step,
    cfg_strength=cfg_strength,
    sway_sampling_coef=sway_sampling_coef,
    speed=speed,
    fix_duration=fix_duration,
):
    # Split the input text into batches
    audio, sr = torchaudio.load(ref_audio)
    max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
    gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
    for i, gen_text in enumerate(gen_text_batches):
        print(f"gen_text {i}", gen_text)

    show_info(f"Generating audio in {len(gen_text_batches)} batches...")
    return infer_batch_process(
        (audio, sr),
        ref_text,
        gen_text_batches,
        model_obj,
        progress=progress,
        target_rms=target_rms,
        cross_fade_duration=cross_fade_duration,
        nfe_step=nfe_step,
        cfg_strength=cfg_strength,
        sway_sampling_coef=sway_sampling_coef,
        speed=speed,
        fix_duration=fix_duration,
    )


# infer batches


def infer_batch_process(
    ref_audio,
    ref_text,
    gen_text_batches,
    model_obj,
    progress=tqdm,
    target_rms=0.1,
    cross_fade_duration=0.15,
    nfe_step=32,
    cfg_strength=2.0,
    sway_sampling_coef=-1,
    speed=1,
    fix_duration=None,
    device=None,
):
    if device is None:
        device = get_device()

    audio, sr = ref_audio
    if audio.shape[0] > 1:
        audio = torch.mean(audio, dim=0, keepdim=True)

    rms = torch.sqrt(torch.mean(torch.square(audio)))
    if rms < target_rms:
        audio = audio * target_rms / rms
    if sr != target_sample_rate:
        resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
        audio = resampler(audio)
    audio = audio.to(device)

    generated_waves = []
    spectrograms = []

    if len(ref_text[-1].encode("utf-8")) == 1:
        ref_text = ref_text + " "
    for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
        # Prepare the text
        text_list = [ref_text + gen_text]
        final_text_list = convert_char_to_pinyin(text_list)

        ref_audio_len = audio.shape[-1] // hop_length
        if fix_duration is not None:
            duration = int(fix_duration * target_sample_rate / hop_length)
        else:
            # Calculate duration
            ref_text_len = len(ref_text.encode("utf-8"))
            gen_text_len = len(gen_text.encode("utf-8"))
            duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)

        # inference
        with torch.inference_mode():
            generated, _ = model_obj.sample(
                cond=audio,
                text=final_text_list,
                duration=duration,
                steps=nfe_step,
                cfg_strength=cfg_strength,
                sway_sampling_coef=sway_sampling_coef,
            )

        generated = generated.to(torch.float32)
        generated = generated[:, ref_audio_len:, :]
        generated_mel_spec = generated.permute(0, 2, 1)
        generated_wave = vocos.decode(generated_mel_spec.cpu())
        if rms < target_rms:
            generated_wave = generated_wave * rms / target_rms

        # wav -> numpy
        generated_wave = generated_wave.squeeze().cpu().numpy()

        generated_waves.append(generated_wave)
        spectrograms.append(generated_mel_spec[0].cpu().numpy())

    # Combine all generated waves with cross-fading
    if cross_fade_duration <= 0:
        # Simply concatenate
        final_wave = np.concatenate(generated_waves)
    else:
        final_wave = generated_waves[0]
        for i in range(1, len(generated_waves)):
            prev_wave = final_wave
            next_wave = generated_waves[i]

            # Calculate cross-fade samples, ensuring it does not exceed wave lengths
            cross_fade_samples = int(cross_fade_duration * target_sample_rate)
            cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))

            if cross_fade_samples <= 0:
                # No overlap possible, concatenate
                final_wave = np.concatenate([prev_wave, next_wave])
                continue

            # Overlapping parts
            prev_overlap = prev_wave[-cross_fade_samples:]
            next_overlap = next_wave[:cross_fade_samples]

            # Fade out and fade in
            fade_out = np.linspace(1, 0, cross_fade_samples)
            fade_in = np.linspace(0, 1, cross_fade_samples)

            # Cross-faded overlap
            cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in

            # Combine
            new_wave = np.concatenate(
                [prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]]
            )

            final_wave = new_wave

    # Create a combined spectrogram
    combined_spectrogram = np.concatenate(spectrograms, axis=1)

    return final_wave, target_sample_rate, combined_spectrogram


# remove silence from generated wav


def remove_silence_for_generated_wav(filename):
    aseg = AudioSegment.from_file(filename)
    non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
    non_silent_wave = AudioSegment.silent(duration=0)
    for non_silent_seg in non_silent_segs:
        non_silent_wave += non_silent_seg
    aseg = non_silent_wave
    aseg.export(filename, format="wav")