# A unified script for inference process # Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format import re import tempfile import numpy as np import torch import torchaudio import tqdm from pydub import AudioSegment, silence from transformers import pipeline from vocos import Vocos from model import CFM from model.utils import ( load_checkpoint, get_tokenizer, convert_char_to_pinyin, ) # get device def get_device(): device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" return device vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") # ----------------------------------------- target_sample_rate = 24000 n_mel_channels = 100 hop_length = 256 target_rms = 0.1 cross_fade_duration = 0.15 ode_method = "euler" nfe_step = 32 # 16, 32 cfg_strength = 2.0 sway_sampling_coef = -1.0 speed = 1.0 fix_duration = None # ----------------------------------------- # chunk text into smaller pieces def chunk_text(text, max_chars=135): """ Splits the input text into chunks, each with a maximum number of characters. Args: text (str): The text to be split. max_chars (int): The maximum number of characters per chunk. Returns: List[str]: A list of text chunks. """ chunks = [] current_chunk = "" # Split the text into sentences based on punctuation followed by whitespace sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text) for sentence in sentences: if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars: current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence else: if current_chunk: chunks.append(current_chunk.strip()) current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence if current_chunk: chunks.append(current_chunk.strip()) return chunks # load vocoder def load_vocoder(is_local=False, local_path="", device=None): if device is None: device = get_device() if is_local: print(f"Load vocos from local path {local_path}") vocos = Vocos.from_hparams(f"{local_path}/config.yaml") state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location=device) vocos.load_state_dict(state_dict) vocos.eval() else: print("Download Vocos from huggingface charactr/vocos-mel-24khz") vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") return vocos # load asr pipeline asr_pipe = None def initialize_asr_pipeline(device=None): global asr_pipe if device is None: device = get_device() asr_pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16, device=device, ) # load model for inference def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_method, use_ema=True, device=None): if device is None: device = get_device() if vocab_file == "": vocab_file = "Emilia_ZH_EN" tokenizer = "pinyin" else: tokenizer = "custom" print("\nvocab : ", vocab_file) print("tokenizer : ", tokenizer) print("model : ", ckpt_path, "\n") vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer) model = CFM( transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), mel_spec_kwargs=dict( target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length, ), odeint_kwargs=dict( method=ode_method, ), vocab_char_map=vocab_char_map, ).to(device) model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema) return model # preprocess reference audio and text def preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=print, device=None): if device is None: device = get_device() show_info("Converting audio...") with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: aseg = AudioSegment.from_file(ref_audio_orig) non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000) non_silent_wave = AudioSegment.silent(duration=0) for non_silent_seg in non_silent_segs: non_silent_wave += non_silent_seg aseg = non_silent_wave audio_duration = len(aseg) if audio_duration > 15000: show_info("Audio is over 15s, clipping to only first 15s.") aseg = aseg[:15000] aseg.export(f.name, format="wav") ref_audio = f.name if not ref_text.strip(): global asr_pipe if asr_pipe is None: initialize_asr_pipeline(device=device) show_info("No reference text provided, transcribing reference audio...") ref_text = asr_pipe( ref_audio, chunk_length_s=30, batch_size=128, generate_kwargs={"task": "transcribe"}, return_timestamps=False, )["text"].strip() show_info("Finished transcription") else: show_info("Using custom reference text...") # Add the functionality to ensure it ends with ". " if not ref_text.endswith(". ") and not ref_text.endswith("。"): if ref_text.endswith("."): ref_text += " " else: ref_text += ". " return ref_audio, ref_text # infer process: chunk text -> infer batches [i.e. infer_batch_process()] def infer_process( ref_audio, ref_text, gen_text, model_obj, show_info=print, progress=tqdm, target_rms=target_rms, cross_fade_duration=cross_fade_duration, nfe_step=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, speed=speed, fix_duration=fix_duration, ): # Split the input text into batches audio, sr = torchaudio.load(ref_audio) max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr)) gen_text_batches = chunk_text(gen_text, max_chars=max_chars) for i, gen_text in enumerate(gen_text_batches): print(f"gen_text {i}", gen_text) show_info(f"Generating audio in {len(gen_text_batches)} batches...") return infer_batch_process( (audio, sr), ref_text, gen_text_batches, model_obj, progress=progress, target_rms=target_rms, cross_fade_duration=cross_fade_duration, nfe_step=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, speed=speed, fix_duration=fix_duration, ) # infer batches def infer_batch_process( ref_audio, ref_text, gen_text_batches, model_obj, progress=tqdm, target_rms=0.1, cross_fade_duration=0.15, nfe_step=32, cfg_strength=2.0, sway_sampling_coef=-1, speed=1, fix_duration=None, device=None, ): if device is None: device = get_device() audio, sr = ref_audio if audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True) rms = torch.sqrt(torch.mean(torch.square(audio))) if rms < target_rms: audio = audio * target_rms / rms if sr != target_sample_rate: resampler = torchaudio.transforms.Resample(sr, target_sample_rate) audio = resampler(audio) audio = audio.to(device) generated_waves = [] spectrograms = [] if len(ref_text[-1].encode("utf-8")) == 1: ref_text = ref_text + " " for i, gen_text in enumerate(progress.tqdm(gen_text_batches)): # Prepare the text text_list = [ref_text + gen_text] final_text_list = convert_char_to_pinyin(text_list) ref_audio_len = audio.shape[-1] // hop_length if fix_duration is not None: duration = int(fix_duration * target_sample_rate / hop_length) else: # Calculate duration ref_text_len = len(ref_text.encode("utf-8")) gen_text_len = len(gen_text.encode("utf-8")) duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) # inference with torch.inference_mode(): generated, _ = model_obj.sample( cond=audio, text=final_text_list, duration=duration, steps=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, ) generated = generated.to(torch.float32) generated = generated[:, ref_audio_len:, :] generated_mel_spec = generated.permute(0, 2, 1) generated_wave = vocos.decode(generated_mel_spec.cpu()) if rms < target_rms: generated_wave = generated_wave * rms / target_rms # wav -> numpy generated_wave = generated_wave.squeeze().cpu().numpy() generated_waves.append(generated_wave) spectrograms.append(generated_mel_spec[0].cpu().numpy()) # Combine all generated waves with cross-fading if cross_fade_duration <= 0: # Simply concatenate final_wave = np.concatenate(generated_waves) else: final_wave = generated_waves[0] for i in range(1, len(generated_waves)): prev_wave = final_wave next_wave = generated_waves[i] # Calculate cross-fade samples, ensuring it does not exceed wave lengths cross_fade_samples = int(cross_fade_duration * target_sample_rate) cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave)) if cross_fade_samples <= 0: # No overlap possible, concatenate final_wave = np.concatenate([prev_wave, next_wave]) continue # Overlapping parts prev_overlap = prev_wave[-cross_fade_samples:] next_overlap = next_wave[:cross_fade_samples] # Fade out and fade in fade_out = np.linspace(1, 0, cross_fade_samples) fade_in = np.linspace(0, 1, cross_fade_samples) # Cross-faded overlap cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in # Combine new_wave = np.concatenate( [prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]] ) final_wave = new_wave # Create a combined spectrogram combined_spectrogram = np.concatenate(spectrograms, axis=1) return final_wave, target_sample_rate, combined_spectrogram # remove silence from generated wav def remove_silence_for_generated_wav(filename): aseg = AudioSegment.from_file(filename) non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500) non_silent_wave = AudioSegment.silent(duration=0) for non_silent_seg in non_silent_segs: non_silent_wave += non_silent_seg aseg = non_silent_wave aseg.export(filename, format="wav")