toandev commited on
Commit
20de438
1 Parent(s): 35ae061

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -49
app.py CHANGED
@@ -1,4 +1,8 @@
1
- from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
 
 
 
 
2
  from PIL import Image
3
  import requests
4
  import torch
@@ -7,62 +11,89 @@ import gradio as gr
7
  from gradio import FileData
8
  import time
9
  import spaces
 
 
10
  ckpt = "toandev/Viet-Receipt-Llama-3.2-11B-Vision-Instruct"
11
- model = MllamaForConditionalGeneration.from_pretrained(ckpt,
12
- torch_dtype=torch.bfloat16).to("cuda")
 
13
  processor = AutoProcessor.from_pretrained(ckpt)
14
 
15
 
16
  @spaces.GPU
17
  def bot_streaming(message, history, max_new_tokens=250):
18
-
19
  txt = message["text"]
20
  ext_buffer = f"{txt}"
21
-
22
- messages= []
23
  images = []
24
-
25
 
26
- for i, msg in enumerate(history):
27
  if isinstance(msg[0], tuple):
28
- messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
29
- messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  images.append(Image.open(msg[0][0]).convert("RGB"))
31
- elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
32
  # messages are already handled
33
  pass
34
- elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
35
- messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
36
- messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
 
 
 
 
 
 
37
 
38
  # add current message
39
  if len(message["files"]) == 1:
40
-
41
- if isinstance(message["files"][0], str): # examples
42
  image = Image.open(message["files"][0]).convert("RGB")
43
- else: # regular input
44
  image = Image.open(message["files"][0]["path"]).convert("RGB")
45
  images.append(image)
46
- messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
 
 
 
 
 
47
  else:
48
  messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
49
 
50
-
51
  texts = processor.apply_chat_template(messages, add_generation_prompt=True)
52
 
53
  if images == []:
54
  inputs = processor(text=texts, return_tensors="pt").to("cuda")
55
  else:
56
  inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
57
- streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
 
 
58
 
59
  generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
60
  generated_text = ""
61
-
62
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
63
  thread.start()
64
  buffer = ""
65
-
66
  for new_text in streamer:
67
  buffer += new_text
68
  generated_text_without_prompt = buffer
@@ -70,31 +101,24 @@ def bot_streaming(message, history, max_new_tokens=250):
70
  yield buffer
71
 
72
 
73
- demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[
74
- [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
75
- 200],
76
- [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
77
- 250],
78
- [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
79
- 250],
80
- [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
81
- 250],
82
- [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]},
83
- 250],
 
84
  ],
85
- textbox=gr.MultimodalTextbox(),
86
- additional_inputs = [gr.Slider(
87
- minimum=10,
88
- maximum=500,
89
- value=250,
90
- step=10,
91
- label="Maximum number of new tokens to generate",
92
- )
93
- ],
94
- cache_examples=False,
95
- description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
96
- stop_btn="Stop Generation",
97
- fill_height=True,
98
- multimodal=True)
99
-
100
- demo.launch(debug=True)
 
1
+ from transformers import (
2
+ MllamaForConditionalGeneration,
3
+ AutoProcessor,
4
+ TextIteratorStreamer,
5
+ )
6
  from PIL import Image
7
  import requests
8
  import torch
 
11
  from gradio import FileData
12
  import time
13
  import spaces
14
+
15
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
  ckpt = "toandev/Viet-Receipt-Llama-3.2-11B-Vision-Instruct"
17
+ model = MllamaForConditionalGeneration.from_pretrained(
18
+ ckpt, torch_dtype=torch.bfloat16
19
+ ).to(device)
20
  processor = AutoProcessor.from_pretrained(ckpt)
21
 
22
 
23
  @spaces.GPU
24
  def bot_streaming(message, history, max_new_tokens=250):
25
+
26
  txt = message["text"]
27
  ext_buffer = f"{txt}"
28
+
29
+ messages = []
30
  images = []
 
31
 
32
+ for i, msg in enumerate(history):
33
  if isinstance(msg[0], tuple):
34
+ messages.append(
35
+ {
36
+ "role": "user",
37
+ "content": [
38
+ {"type": "text", "text": history[i + 1][0]},
39
+ {"type": "image"},
40
+ ],
41
+ }
42
+ )
43
+ messages.append(
44
+ {
45
+ "role": "assistant",
46
+ "content": [{"type": "text", "text": history[i + 1][1]}],
47
+ }
48
+ )
49
  images.append(Image.open(msg[0][0]).convert("RGB"))
50
+ elif isinstance(history[i - 1], tuple) and isinstance(msg[0], str):
51
  # messages are already handled
52
  pass
53
+ elif isinstance(history[i - 1][0], str) and isinstance(
54
+ msg[0], str
55
+ ): # text only turn
56
+ messages.append(
57
+ {"role": "user", "content": [{"type": "text", "text": msg[0]}]}
58
+ )
59
+ messages.append(
60
+ {"role": "assistant", "content": [{"type": "text", "text": msg[1]}]}
61
+ )
62
 
63
  # add current message
64
  if len(message["files"]) == 1:
65
+
66
+ if isinstance(message["files"][0], str): # examples
67
  image = Image.open(message["files"][0]).convert("RGB")
68
+ else: # regular input
69
  image = Image.open(message["files"][0]["path"]).convert("RGB")
70
  images.append(image)
71
+ messages.append(
72
+ {
73
+ "role": "user",
74
+ "content": [{"type": "text", "text": txt}, {"type": "image"}],
75
+ }
76
+ )
77
  else:
78
  messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
79
 
 
80
  texts = processor.apply_chat_template(messages, add_generation_prompt=True)
81
 
82
  if images == []:
83
  inputs = processor(text=texts, return_tensors="pt").to("cuda")
84
  else:
85
  inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
86
+ streamer = TextIteratorStreamer(
87
+ processor, skip_special_tokens=True, skip_prompt=True
88
+ )
89
 
90
  generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
91
  generated_text = ""
92
+
93
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
94
  thread.start()
95
  buffer = ""
96
+
97
  for new_text in streamer:
98
  buffer += new_text
99
  generated_text_without_prompt = buffer
 
101
  yield buffer
102
 
103
 
104
+ demo = gr.ChatInterface(
105
+ fn=bot_streaming,
106
+ title="Multimodal Llama",
107
+ textbox=gr.MultimodalTextbox(),
108
+ additional_inputs=[
109
+ gr.Slider(
110
+ minimum=10,
111
+ maximum=500,
112
+ value=250,
113
+ step=10,
114
+ label="Maximum number of new tokens to generate",
115
+ )
116
  ],
117
+ cache_examples=False,
118
+ description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
119
+ stop_btn="Stop Generation",
120
+ fill_height=True,
121
+ multimodal=True,
122
+ )
123
+
124
+ demo.launch(debug=True)