Spaces:
Sleeping
Sleeping
vvv-knyazeva
commited on
Commit
•
2c52d39
1
Parent(s):
a13d4f2
Update stri.py
Browse files
stri.py
CHANGED
@@ -51,7 +51,7 @@ book_embeddings = []
|
|
51 |
for inputs, attention_masks in zip(input_ids, attention_mask):
|
52 |
with torch.no_grad():
|
53 |
book_embedding = model(inputs.unsqueeze(0), attention_mask=attention_masks.unsqueeze(0))
|
54 |
-
book_embedding = book_embedding[0][:, 0, :]#.detach().cpu().numpy()
|
55 |
book_embeddings.append(np.squeeze(book_embedding))
|
56 |
|
57 |
# Определение запроса пользователя
|
@@ -68,17 +68,17 @@ query_mask = torch.tensor(query_mask, dtype=torch.long)
|
|
68 |
|
69 |
with torch.no_grad():
|
70 |
query_embedding = model(query_padded.unsqueeze(0), query_mask.unsqueeze(0))
|
71 |
-
query_embedding = query_embedding[0][:, 0, :]
|
72 |
|
73 |
# Вычисление косинусного расстояния между эмбеддингом запроса и каждой аннотацией
|
74 |
-
#cosine_similarities = torch.nn.functional.cosine_similarity(
|
75 |
-
# query_embedding.squeeze(0),
|
76 |
-
# torch.stack(book_embeddings)
|
77 |
-
#)
|
78 |
cosine_similarities = torch.nn.functional.cosine_similarity(
|
79 |
-
|
80 |
-
torch.stack(
|
81 |
)
|
|
|
|
|
|
|
|
|
82 |
|
83 |
cosine_similarities = cosine_similarities.numpy()
|
84 |
|
|
|
51 |
for inputs, attention_masks in zip(input_ids, attention_mask):
|
52 |
with torch.no_grad():
|
53 |
book_embedding = model(inputs.unsqueeze(0), attention_mask=attention_masks.unsqueeze(0))
|
54 |
+
book_embedding = book_embedding[0][:, 0, :] #.detach().cpu().numpy()
|
55 |
book_embeddings.append(np.squeeze(book_embedding))
|
56 |
|
57 |
# Определение запроса пользователя
|
|
|
68 |
|
69 |
with torch.no_grad():
|
70 |
query_embedding = model(query_padded.unsqueeze(0), query_mask.unsqueeze(0))
|
71 |
+
query_embedding = query_embedding[0][:, 0, :] #.detach().cpu().numpy()
|
72 |
|
73 |
# Вычисление косинусного расстояния между эмбеддингом запроса и каждой аннотацией
|
|
|
|
|
|
|
|
|
74 |
cosine_similarities = torch.nn.functional.cosine_similarity(
|
75 |
+
query_embedding.squeeze(0),
|
76 |
+
torch.stack(book_embeddings)
|
77 |
)
|
78 |
+
#cosine_similarities = torch.nn.functional.cosine_similarity(
|
79 |
+
# torch.tensor(query_embedding.squeeze(0)),
|
80 |
+
# torch.stack([torch.tensor(embedding) for embedding in book_embeddings])
|
81 |
+
#)
|
82 |
|
83 |
cosine_similarities = cosine_similarities.numpy()
|
84 |
|