File size: 1,364 Bytes
e3c9c8c
 
33855af
 
 
21c037f
33855af
 
 
 
e3c9c8c
 
 
 
 
 
 
 
 
 
 
 
 
4d18090
9de557a
21c037f
e3c9c8c
 
f26d1dc
 
e3c9c8c
 
f808445
e3c9c8c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import streamlit as st
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
from streamlit_extras.let_it_rain import rain

rain(
    emoji="❔",
    font_size=54,
    falling_speed=5,
    animation_length="infinite",
)

model_name = "timpal0l/mdeberta-v3-base-squad2"
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

def get_answer(context, question):
    nlp = pipeline('question-answering', model=model, tokenizer=tokenizer)
    QA_input = {'question': question, 'context': context}
    res = nlp(QA_input)
    answer = res['answer']
    return answer

def main():
    st.title("Question Answering App :robot_face:")
    st.divider()
    st.markdown("### **Enter the context and question, then click on ':blue[Get Answer]' to retrieve the answer:**")

    
    context = st.text_area("**:blue[Context]**", "Enter the context here...")
    question = st.text_input("**:blue[Question]**", "Enter the question here...")

    
    if st.button(":blue[**Get Answer**]"):
        
        if context.strip() == "" or question.strip() == "":
            st.warning("Please enter the context and question.")
        else:
            
            answer = get_answer(context, question)
            st.success(f"Answer: {answer}")


if __name__ == "__main__":
    main()