waleko's picture
change json + description change
9016294
import gradio as gr
import torch
from matplotlib import pyplot as plt
import numpy as np
from groundingdino.util.inference import load_model, load_image, predict
from segment_anything import SamPredictor, sam_model_registry
from torchvision.ops import box_convert
model_type = "vit_b"
sam_checkpoint = "weights/sam_vit_b.pth"
config = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
dino_checkpoint = "weights/groundingdino_swint_ogc.pth"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
predictor = SamPredictor(sam)
device = "cpu"
model = load_model(config, dino_checkpoint, device)
box_threshold = 0.35
text_threshold = 0.25
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label=None):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='red', facecolor=(0, 0, 0, 0), lw=2))
if label is not None:
ax.text(x0, y0, label, fontsize=12, color='white', backgroundcolor='red', ha='left', va='top')
def extract_object_with_transparent_background(image, masks):
mask_expanded = np.expand_dims(masks[0], axis=-1)
mask_expanded = np.repeat(mask_expanded, 3, axis=-1)
segment = image * mask_expanded
rgba_segment = np.zeros((segment.shape[0], segment.shape[1], 4), dtype=np.uint8)
rgba_segment[:, :, :3] = segment
rgba_segment[:, :, 3] = masks[0] * 255
return rgba_segment
def extract_remaining_image(image, masks):
inverse_mask = np.logical_not(masks[0])
inverse_mask_expanded = np.expand_dims(inverse_mask, axis=-1)
inverse_mask_expanded = np.repeat(inverse_mask_expanded, 3, axis=-1)
remaining_image = image * inverse_mask_expanded
return remaining_image
def overlay_masks_boxes_on_image(image, masks, boxes, labels, show_masks, show_boxes):
fig, ax = plt.subplots()
ax.imshow(image)
if show_masks:
for mask in masks:
show_mask(mask, ax, random_color=False)
if show_boxes:
for input_box, label in zip(boxes, labels):
show_box(input_box, ax, label)
ax.axis('off')
plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0)
plt.margins(0, 0)
fig.canvas.draw()
output_image = np.array(fig.canvas.buffer_rgba())
plt.close(fig)
return output_image
def detect_objects(image, prompt, show_masks=True, show_boxes=True, crop_options="No crop"):
image_source, image = load_image(image)
predictor.set_image(image_source)
boxes, logits, phrases = predict(
model=model,
image=image,
caption=prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=device
)
h, w, _ = image_source.shape
boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy") * torch.Tensor([w, h, w, h])
boxes = np.round(boxes.numpy()).astype(int)
labels = [f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits)]
masks_list = []
res_json = {"prompt": prompt, "objects": []}
output_image_paths = []
for i, (input_box, label, phrase, logit) in enumerate(zip(boxes, labels, phrases, logits.tolist())):
x1, y1, x2, y2 = input_box
width = x2 - x1
height = y2 - y1
avg_size = (width + height) / 2
d = avg_size * 0.1
center_point = np.array([(x1 + x2) / 2, (y1 + y2) / 2])
points = []
points.append([center_point[0], center_point[1] - d])
points.append([center_point[0], center_point[1] + d])
points.append([center_point[0] - d, center_point[1]])
points.append([center_point[0] + d, center_point[1]])
input_point = np.array(points)
input_label = np.array([1] * len(input_point))
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=True,
)
mask_input = logits[np.argmax(scores), :, :]
masks, _, _ = predictor.predict(
point_coords=input_point,
point_labels=input_label,
mask_input=mask_input[None, :, :],
multimask_output=False
)
masks_list.append(masks)
composite_image = np.zeros_like(image_source)
rgba_segment = extract_object_with_transparent_background(image_source, masks)
composite_image = np.maximum(composite_image, rgba_segment[:, :, :3])
cropped_image = composite_image[y1:y2, x1:x2, :]
output_image = overlay_masks_boxes_on_image(cropped_image, [], [], [], False, False)
output_image_path = f'output_image_{i}.jpeg'
plt.imsave(output_image_path, output_image)
output_image_paths.append(output_image_path)
# save object information in json
res_json["objects"].append({
"label": phrase,
"dino_score": logit,
"sam_score": np.max(scores).item(),
"box": input_box.tolist(),
"center": center_point.tolist(),
"avg_size": avg_size
})
return [res_json, output_image_paths]
app = gr.Interface(
detect_objects,
inputs=[gr.Image(type='filepath', label="Upload Image"),
gr.Textbox(
label="Object to Detect",
placeholder="Enter any text, comma separated if multiple objects needed",
show_label=True,
lines=1,
)],
outputs=[
gr.JSON(label="Output JSON"),
gr.Gallery(label="Result"),
],
examples=[
["images/fish.jpg", "fish"],
["images/birds.png", "bird"],
["images/bear.png", "bear"],
["images/penguin.png", "penguin"],
["images/penn.jpg", "sign board"]
],
title="Object Detection, Segmentation and Cropping",
description="This app uses DINO to detect objects in an image and then uses SAM to segment and crop the objects.",
)
app.launch()