Volko
first push
6b7f843
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath
class FeatureResizer(nn.Module):
"""
This class takes as input a set of embeddings of dimension C1 and outputs a set of
embedding of dimension C2, after a linear transformation, dropout and normalization (LN).
"""
def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True):
super().__init__()
self.do_ln = do_ln
# Object feature encoding
self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True)
self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12)
self.dropout = nn.Dropout(dropout)
def forward(self, encoder_features):
x = self.fc(encoder_features)
if self.do_ln:
x = self.layer_norm(x)
output = self.dropout(x)
return output
def l1norm(X, dim, eps=1e-8):
"""L1-normalize columns of X"""
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
X = torch.div(X, norm)
return X
def l2norm(X, dim, eps=1e-8):
"""L2-normalize columns of X"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8):
"""
query: (n_context, queryL, d)
context: (n_context, sourceL, d)
"""
batch_size_q, queryL = query.size(0), query.size(1)
batch_size, sourceL = context.size(0), context.size(1)
# Get attention
# --> (batch, d, queryL)
queryT = torch.transpose(query, 1, 2)
# (batch, sourceL, d)(batch, d, queryL)
# --> (batch, sourceL, queryL)
attn = torch.bmm(context, queryT)
if raw_feature_norm == "softmax":
# --> (batch*sourceL, queryL)
attn = attn.view(batch_size * sourceL, queryL)
attn = nn.Softmax()(attn)
# --> (batch, sourceL, queryL)
attn = attn.view(batch_size, sourceL, queryL)
elif raw_feature_norm == "l2norm":
attn = l2norm(attn, 2)
elif raw_feature_norm == "clipped_l2norm":
attn = nn.LeakyReLU(0.1)(attn)
attn = l2norm(attn, 2)
else:
raise ValueError("unknown first norm type:", raw_feature_norm)
# --> (batch, queryL, sourceL)
attn = torch.transpose(attn, 1, 2).contiguous()
# --> (batch*queryL, sourceL)
attn = attn.view(batch_size * queryL, sourceL)
attn = nn.Softmax()(attn * smooth)
# --> (batch, queryL, sourceL)
attn = attn.view(batch_size, queryL, sourceL)
# --> (batch, sourceL, queryL)
attnT = torch.transpose(attn, 1, 2).contiguous()
# --> (batch, d, sourceL)
contextT = torch.transpose(context, 1, 2)
# (batch x d x sourceL)(batch x sourceL x queryL)
# --> (batch, d, queryL)
weightedContext = torch.bmm(contextT, attnT)
# --> (batch, queryL, d)
weightedContext = torch.transpose(weightedContext, 1, 2)
return weightedContext, attnT
class BiMultiHeadAttention(nn.Module):
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
super(BiMultiHeadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.v_dim = v_dim
self.l_dim = l_dim
assert (
self.head_dim * self.num_heads == self.embed_dim
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
self.scale = self.head_dim ** (-0.5)
self.dropout = dropout
self.v_proj = nn.Linear(self.v_dim, self.embed_dim)
self.l_proj = nn.Linear(self.l_dim, self.embed_dim)
self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim)
self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim)
self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim)
self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim)
self.stable_softmax_2d = True
self.clamp_min_for_underflow = True
self.clamp_max_for_overflow = True
self._reset_parameters()
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _reset_parameters(self):
nn.init.xavier_uniform_(self.v_proj.weight)
self.v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.l_proj.weight)
self.l_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.values_v_proj.weight)
self.values_v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.values_l_proj.weight)
self.values_l_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.out_v_proj.weight)
self.out_v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.out_l_proj.weight)
self.out_l_proj.bias.data.fill_(0)
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
"""_summary_
Args:
v (_type_): bs, n_img, dim
l (_type_): bs, n_text, dim
attention_mask_v (_type_, optional): _description_. bs, n_img
attention_mask_l (_type_, optional): _description_. bs, n_text
Returns:
_type_: _description_
"""
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
bsz, tgt_len, _ = v.size()
query_states = self.v_proj(v) * self.scale
key_states = self._shape(self.l_proj(l), -1, bsz)
value_v_states = self._shape(self.values_v_proj(v), -1, bsz)
value_l_states = self._shape(self.values_l_proj(l), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_v_states = value_v_states.view(*proj_shape)
value_l_states = value_l_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
)
if self.stable_softmax_2d:
attn_weights = attn_weights - attn_weights.max()
if self.clamp_min_for_underflow:
attn_weights = torch.clamp(
attn_weights, min=-50000
) # Do not increase -50000, data type half has quite limited range
if self.clamp_max_for_overflow:
attn_weights = torch.clamp(
attn_weights, max=50000
) # Do not increase 50000, data type half has quite limited range
attn_weights_T = attn_weights.transpose(1, 2)
attn_weights_l = attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0]
if self.clamp_min_for_underflow:
attn_weights_l = torch.clamp(
attn_weights_l, min=-50000
) # Do not increase -50000, data type half has quite limited range
if self.clamp_max_for_overflow:
attn_weights_l = torch.clamp(
attn_weights_l, max=50000
) # Do not increase 50000, data type half has quite limited range
# mask vison for language
if attention_mask_v is not None:
attention_mask_v = (
attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
)
attn_weights_l.masked_fill_(attention_mask_v, float("-inf"))
attn_weights_l = attn_weights_l.softmax(dim=-1)
# mask language for vision
if attention_mask_l is not None:
attention_mask_l = (
attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
)
attn_weights.masked_fill_(attention_mask_l, float("-inf"))
attn_weights_v = attn_weights.softmax(dim=-1)
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training)
attn_output_v = torch.bmm(attn_probs_v, value_l_states)
attn_output_l = torch.bmm(attn_probs_l, value_v_states)
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}"
)
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim):
raise ValueError(
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}"
)
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output_v = attn_output_v.transpose(1, 2)
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim)
attn_output_l = attn_output_l.transpose(1, 2)
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
attn_output_v = self.out_v_proj(attn_output_v)
attn_output_l = self.out_l_proj(attn_output_l)
return attn_output_v, attn_output_l
# Bi-Direction MHA (text->image, image->text)
class BiAttentionBlock(nn.Module):
def __init__(
self,
v_dim,
l_dim,
embed_dim,
num_heads,
dropout=0.1,
drop_path=0.0,
init_values=1e-4,
cfg=None,
):
"""
Inputs:
embed_dim - Dimensionality of input and attention feature vectors
hidden_dim - Dimensionality of hidden layer in feed-forward network
(usually 2-4x larger than embed_dim)
num_heads - Number of heads to use in the Multi-Head Attention block
dropout - Amount of dropout to apply in the feed-forward network
"""
super(BiAttentionBlock, self).__init__()
# pre layer norm
self.layer_norm_v = nn.LayerNorm(v_dim)
self.layer_norm_l = nn.LayerNorm(l_dim)
self.attn = BiMultiHeadAttention(
v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout
)
# add layer scale for training stability
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True)
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True)
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
v = self.layer_norm_v(v)
l = self.layer_norm_l(l)
delta_v, delta_l = self.attn(
v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l
)
# v, l = v + delta_v, l + delta_l
v = v + self.drop_path(self.gamma_v * delta_v)
l = l + self.drop_path(self.gamma_l * delta_l)
return v, l
# def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None)