#!/usr/bin/env python import re from argparse import ArgumentParser from functools import lru_cache from importlib.resources import files from inspect import signature from multiprocessing.pool import ThreadPool from tempfile import NamedTemporaryFile from textwrap import dedent from typing import Optional from PIL import Image import fitz import gradio as gr from transformers import TextIteratorStreamer, pipeline, ImageToTextPipeline, AutoModelForPreTraining, AutoProcessor import os from pix2tex.cli import LatexOCR from munch import Munch from infer import TikzDocument, TikzGenerator # assets = files(__package__) / "assets" if __package__ else files("assets") / "." models = { "pix2tikz": "pix2tikz/mixed_e362_step201.pth", "llava-1.5-7b-hf": "waleko/TikZ-llava-1.5-7b", "new llava-1.5-7b-hf": "waleko/TikZ-llava-1.5-7b v2" } def is_quantization(model_name): return "waleko/TikZ-llava" in model_name @lru_cache(maxsize=1) def cached_load(model_name, **kwargs) -> ImageToTextPipeline: # split model_dict = model_name.split(" ") revision = "main" if len(model_dict) > 1: model_name, revision = model_dict gr.Info("Instantiating model. Could take a while...") # type: ignore if not is_quantization(model_name): return pipeline("image-to-text", model=model_name, revision=revision, **kwargs) else: model = AutoModelForPreTraining.from_pretrained(model_name, load_in_4bit=True, revision=revision, **kwargs) processor = AutoProcessor.from_pretrained(model_name) return pipeline(task="image-to-text", model=model, tokenizer=processor.tokenizer, image_processor=processor.image_processor) def convert_to_svg(pdf): doc = fitz.open("pdf", pdf.raw) # type: ignore return doc[0].get_svg_image() def pix2tikz( checkpoint: str, image: Image.Image, temperature: float, _: float, __: int, ___: bool, ): cur_pwd = os.path.dirname(os.path.abspath(__file__)) config_path = os.path.join(cur_pwd, 'pix2tikz/config.yaml') model_path = os.path.join(cur_pwd, checkpoint) print(cur_pwd, config_path, model_path, os.path.exists(config_path), os.path.exists(model_path)) args = Munch({'config': config_path, 'checkpoint': model_path, 'no_resize': False, 'no_cuda': False, 'temperature': temperature}) model = LatexOCR(args) res = model(image) text = re.sub(r'\\n(?=\W)', '\n', res) return text, None, True def inference( model_name: str, image_dict: dict, temperature: float, top_p: float, top_k: int, expand_to_square: bool, ): try: image = image_dict['composite'] if "pix2tikz" in model_name: yield pix2tikz(model_name, image, temperature, top_p, top_k, expand_to_square) return generate = TikzGenerator( cached_load(model_name, device_map="auto"), temperature=temperature, top_p=top_p, top_k=top_k, expand_to_square=expand_to_square, ) streamer = TextIteratorStreamer( generate.pipeline.tokenizer, # type: ignore skip_prompt=True, skip_special_tokens=True ) thread = ThreadPool(processes=1) async_result = thread.apply_async(generate, kwds=dict(image=image, streamer=streamer)) generated_text = "" for new_text in streamer: generated_text += new_text yield generated_text, None, False yield async_result.get().code, None, True except Exception as e: raise gr.Error(f"Internal Error! {e}") def tex_compile( code: str, timeout: int, rasterize: bool ): tikzdoc = TikzDocument(code, timeout=timeout) if not tikzdoc.has_content: if tikzdoc.compiled_with_errors: raise gr.Error("TikZ code did not compile!") # type: ignore else: gr.Warning("TikZ code compiled to an empty image!") # type: ignore elif tikzdoc.compiled_with_errors: # gr.Warning("TikZ code compiled with errors!") # type: ignore print("TikZ code compiled with errors!") if rasterize: yield tikzdoc.rasterize() else: with NamedTemporaryFile(suffix=".svg", buffering=0) as tmpfile: if pdf:=tikzdoc.pdf: tmpfile.write(convert_to_svg(pdf).encode()) yield tmpfile.name if pdf else None def check_inputs(image: Image.Image): if not image: raise gr.Error("Image is required") def get_banner(): return dedent('''\ # Ti*k*Z Assistant: Sketches to Vector Graphics with Ti*k*Z

Open in HF Spaces

''') def remove_darkness(stylable): """ Patch gradio to only contain light mode colors. """ if isinstance(stylable, gr.themes.Base): # remove dark variants from the entire theme params = signature(stylable.set).parameters colors = {color: getattr(stylable, color.removesuffix("_dark")) for color in dir(stylable) if color in params} return stylable.set(**colors) elif isinstance(stylable, gr.Blocks): # also handle components which do not use the theme (e.g. modals) stylable.load(js="() => document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'))") return stylable else: raise ValueError def build_ui(model=list(models)[0], lock=False, rasterize=False, force_light=False, lock_reason="locked", timeout=120): theme = remove_darkness(gr.themes.Soft()) if force_light else gr.themes.Soft() with gr.Blocks(theme=theme, title="TikZ Assistant") as demo: # type: ignore if force_light: remove_darkness(demo) gr.Markdown(get_banner()) with gr.Row(variant="panel"): with gr.Column(): info = ( "Describe what you want to generate. " "Scientific graphics benefit from captions with at least 30 tokens (see examples below), " "while simple objects work best with shorter, 2-3 word captions." ) # caption = gr.Textbox(label="Caption", info=info, placeholder="Type a caption...") # image = gr.Image(label="Image Input", type="pil") image = gr.ImageEditor(label="Image Input", type="pil", sources=['upload', 'clipboard'], value=Image.new('RGB', (336, 336), (255, 255, 255))) label = "Model" + (f" ({lock_reason})" if lock else "") model = gr.Dropdown(label=label, choices=list(models.items()), value=models[model], interactive=not lock) # type: ignore with gr.Accordion(label="Advanced Options", open=False): temperature = gr.Slider(minimum=0, maximum=2, step=0.05, value=0.8, label="Temperature") top_p = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.95, label="Top-P") top_k = gr.Slider(minimum=0, maximum=100, step=10, value=0, label="Top-K") expand_to_square = gr.Checkbox(value=True, label="Expand image to square") with gr.Row(): run_btn = gr.Button("Run", variant="primary") stop_btn = gr.Button("Stop") clear_btn = gr.ClearButton([image]) with gr.Column(): with gr.Tabs() as tabs: with gr.TabItem(label:="TikZ Code", id=0): info = "Source code of the generated image." tikz_code = gr.Code(label=label, show_label=False, interactive=False) with gr.TabItem(label:="Compiled Image", id=1): result_image = gr.Image(label=label, show_label=False, show_share_button=rasterize) clear_btn.add([tikz_code, result_image]) gr.Examples(examples=[ ["https://waleko.github.io/data/image.jpg"], ["https://waleko.github.io/data/image2.jpg"], ["https://waleko.github.io/data/image3.jpg"], ["https://waleko.github.io/data/image4.jpg"], ], inputs=[image]) events = list() finished = gr.Textbox(visible=False) # hack to cancel compile on canceled inference for listener in [run_btn.click]: generate_event = listener( check_inputs, inputs=[image], queue=False ).success( lambda: gr.Tabs(selected=0), outputs=tabs, # type: ignore queue=False ).then( inference, inputs=[model, image, temperature, top_p, top_k, expand_to_square], outputs=[tikz_code, result_image, finished] ) def tex_compile_if_finished(finished, *args): yield from (tex_compile(*args, timeout=timeout, rasterize=rasterize) if finished == "True" else []) compile_event = generate_event.then( lambda finished: gr.Tabs(selected=1) if finished == "True" else gr.Tabs(), inputs=finished, outputs=tabs, # type: ignore queue=False ).then( tex_compile_if_finished, inputs=[finished, tikz_code], outputs=result_image ) events.extend([generate_event, compile_event]) # model.select(lambda model_name: gr.Image(visible="clima" in model_name), inputs=model, outputs=image, queue=False) for btn in [clear_btn, stop_btn]: btn.click(fn=None, cancels=events, queue=False) return demo