Spaces:
Runtime error
Runtime error
File size: 4,631 Bytes
325d5a7 d8d1f00 325d5a7 c3874dd 325d5a7 c3874dd 325d5a7 d8d1f00 325d5a7 a344b34 325d5a7 a344b34 325d5a7 a344b34 325d5a7 a344b34 92b1747 a344b34 325d5a7 0cbbcf0 7c77a73 0cbbcf0 325d5a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Thank you code from https://huggingface.co/spaces/gokaygokay/Gemma-2-llamacpp
#import spaces
import os
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
# huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
hf_hub_download(
repo_id="wannaphong/KhanomTanLLM-1B-Instruct-Q2_K-GGUF",
filename="khanomtanllm-1b-instruct-q2_k.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="wannaphong/KhanomTanLLM-3B-Instruct-Q2_K-GGUF",
filename="khanomtanllm-3b-instruct-q2_k.gguf",
local_dir="./models"
)
# hf_hub_download(
# repo_id="google/gemma-2-2b-it-GGUF",
# filename="2b_it_v2.gguf",
# local_dir="./models",
# token=huggingface_token
# )
llm = None
llm_model = None
#@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
min_p,
top_p,
top_k,
repeat_penalty,
):
# chat_template = MessagesFormatterType.MISTRAL
global llm
global llm_model
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
#n_gpu_layers=81,
n_batch=1024,
n_ctx=2048,
)
llm_model = model
# provider = LlamaCppPythonProvider(llm)
# agent = LlamaCppAgent(
# provider,
# system_prompt=f"{system_message}",
# predefined_messages_formatter_type=chat_template,
# debug_output=True
# )
# settings = provider.get_provider_default_settings()
# settings.temperature = temperature
# settings.top_k = top_k
# settings.top_p = top_p
# settings.min_p = min_p
# settings.max_tokens = max_tokens
# settings.repeat_penalty = repeat_penalty
# settings.stream = True
# messages = BasicChatHistory()
messages=[{"role":"system","content":system_message}]
chat=[{"role":"user","content":message}]
chat_b=[]
i=1
if history!=[]:
for msn in history:
if i%2==0:
messages.append({"role":"user","content":msn})
else:
messages.append({"role":"assistant","content":msn})
i+=1
messages+=chat
print(messages)
stream = llm.create_chat_completion(messages=messages,temperature = temperature,top_k = top_k,top_p = top_p,min_p = min_p,max_tokens = max_tokens,repeat_penalty = repeat_penalty,stream = True)
outputs = ""
for chunk in stream:
delta = chunk['choices'][0]['delta']
if 'content' in delta:
tokens = delta['content'].split()
for token in tokens:
outputs+=token
yield outputs
#yield outputs.replace("<|assistant|>","").replace("<|user|>","")
description = """
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
'khanomtanllm-1b-instruct-q2_k.gguf',
'khanomtanllm-3b-instruct-q2_k.gguf',
],
value="khanomtanllm-1b-instruct-q2_k.gguf",
label="Model"
),
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=2.0, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.05,
label="min-p",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
title="Chat with KhanomTanLLM using llama.cpp",
description=description,
chatbot=gr.Chatbot(
scale=1,
likeable=False,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch() |