Spaces:
Runtime error
Runtime error
# Thank you code from https://huggingface.co/spaces/gokaygokay/Gemma-2-llamacpp | |
#import spaces | |
import os | |
import json | |
import subprocess | |
from llama_cpp import Llama | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
# huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
hf_hub_download( | |
repo_id="wannaphong/KhanomTanLLM-1B-Instruct-Q2_K-GGUF", | |
filename="khanomtanllm-1b-instruct-q2_k.gguf", | |
local_dir="./models" | |
) | |
hf_hub_download( | |
repo_id="wannaphong/KhanomTanLLM-3B-Instruct-Q2_K-GGUF", | |
filename="khanomtanllm-3b-instruct-q2_k.gguf", | |
local_dir="./models" | |
) | |
# hf_hub_download( | |
# repo_id="google/gemma-2-2b-it-GGUF", | |
# filename="2b_it_v2.gguf", | |
# local_dir="./models", | |
# token=huggingface_token | |
# ) | |
llm = None | |
llm_model = None | |
#@spaces.GPU(duration=120) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
system_message, | |
max_tokens, | |
temperature, | |
min_p, | |
top_p, | |
top_k, | |
repeat_penalty, | |
): | |
# chat_template = MessagesFormatterType.MISTRAL | |
global llm | |
global llm_model | |
if llm is None or llm_model != model: | |
llm = Llama( | |
model_path=f"models/{model}", | |
flash_attn=True, | |
#n_gpu_layers=81, | |
n_batch=1024, | |
n_ctx=2048, | |
) | |
llm_model = model | |
# provider = LlamaCppPythonProvider(llm) | |
# agent = LlamaCppAgent( | |
# provider, | |
# system_prompt=f"{system_message}", | |
# predefined_messages_formatter_type=chat_template, | |
# debug_output=True | |
# ) | |
# settings = provider.get_provider_default_settings() | |
# settings.temperature = temperature | |
# settings.top_k = top_k | |
# settings.top_p = top_p | |
# settings.min_p = min_p | |
# settings.max_tokens = max_tokens | |
# settings.repeat_penalty = repeat_penalty | |
# settings.stream = True | |
# messages = BasicChatHistory() | |
messages=[{"role":"system","content":system_message}] | |
chat=[{"role":"user","content":message})] | |
chat_b=[] | |
i=1 | |
if history!=[]: | |
for msn in history: | |
if i%2==0: | |
messages.append({"role":"user","content":msn}) | |
else: | |
messages.append({"role":"assistant","content":msn}) | |
i+=1 | |
messages+=chat | |
print(messages) | |
stream = llm.create_chat_completion(messages=messages,temperature = temperature,top_k = top_k,top_p = top_p,min_p = min_p,max_tokens = max_tokens,repeat_penalty = repeat_penalty,stream = True) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
yield outputs.replace("<|assistant|>","").replace("<|user|>","") | |
description = """ | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown([ | |
'khanomtanllm-1b-instruct-q2_k.gguf', | |
'khanomtanllm-3b-instruct-q2_k.gguf', | |
], | |
value="khanomtanllm-1b-instruct-q2_k.gguf", | |
label="Model" | |
), | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=2.0, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.7, | |
step=0.05, | |
label="min-p", | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p", | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=100, | |
value=40, | |
step=1, | |
label="Top-k", | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition penalty", | |
), | |
], | |
retry_btn="Retry", | |
undo_btn="Undo", | |
clear_btn="Clear", | |
submit_btn="Send", | |
title="Chat with KhanomTanLLM using llama.cpp", | |
description=description, | |
chatbot=gr.Chatbot( | |
scale=1, | |
likeable=False, | |
show_copy_button=True | |
) | |
) | |
if __name__ == "__main__": | |
demo.launch() |