# Thank you code from https://huggingface.co/spaces/gokaygokay/Gemma-2-llamacpp #import spaces import os import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download # huggingface_token = os.getenv("HUGGINGFACE_TOKEN") hf_hub_download( repo_id="wannaphong/KhanomTanLLM-1B-Instruct-Q2_K-GGUF", filename="khanomtanllm-1b-instruct-q2_k.gguf", local_dir="./models" ) hf_hub_download( repo_id="wannaphong/KhanomTanLLM-3B-Instruct-Q2_K-GGUF", filename="khanomtanllm-3b-instruct-q2_k.gguf", local_dir="./models" ) # hf_hub_download( # repo_id="google/gemma-2-2b-it-GGUF", # filename="2b_it_v2.gguf", # local_dir="./models", # token=huggingface_token # ) llm = None llm_model = None #@spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, min_p, top_p, top_k, repeat_penalty, ): # chat_template = MessagesFormatterType.MISTRAL global llm global llm_model if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", flash_attn=True, #n_gpu_layers=81, n_batch=1024, n_ctx=2048, ) llm_model = model # provider = LlamaCppPythonProvider(llm) # agent = LlamaCppAgent( # provider, # system_prompt=f"{system_message}", # predefined_messages_formatter_type=chat_template, # debug_output=True # ) # settings = provider.get_provider_default_settings() # settings.temperature = temperature # settings.top_k = top_k # settings.top_p = top_p # settings.min_p = min_p # settings.max_tokens = max_tokens # settings.repeat_penalty = repeat_penalty # settings.stream = True # messages = BasicChatHistory() messages=[{"role":"system","content":system_message}] chat=[{"role":"user","content":message}] chat_b=[] i=1 if history!=[]: for msn in history: if i%2==0: messages.append({"role":"user","content":msn}) else: messages.append({"role":"assistant","content":msn}) i+=1 messages+=chat print(messages) stream = llm.create_chat_completion(messages=messages,temperature = temperature,top_k = top_k,top_p = top_p,min_p = min_p,max_tokens = max_tokens,repeat_penalty = repeat_penalty,stream = True) outputs = "" for chunk in stream: delta = chunk['choices'][0]['delta'] if 'content' in delta: tokens = delta['content'].split() for token in tokens: yield token #yield outputs.replace("<|assistant|>","").replace("<|user|>","") description = """ """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown([ 'khanomtanllm-1b-instruct-q2_k.gguf', 'khanomtanllm-3b-instruct-q2_k.gguf', ], value="khanomtanllm-1b-instruct-q2_k.gguf", label="Model" ), gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=2.0, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="min-p", ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", ), gr.Slider( minimum=0, maximum=100, value=40, step=1, label="Top-k", ), gr.Slider( minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty", ), ], retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", submit_btn="Send", title="Chat with KhanomTanLLM using llama.cpp", description=description, chatbot=gr.Chatbot( scale=1, likeable=False, show_copy_button=True ) ) if __name__ == "__main__": demo.launch()