File size: 22,279 Bytes
0ee69bd
514b8a9
 
 
1c46815
 
 
 
4f56ea6
948e406
 
7fb4339
0381da2
 
3cd20a5
514b8a9
ff11af3
514b8a9
 
 
 
21051ce
68b9131
514b8a9
21051ce
 
 
 
 
 
 
514b8a9
21051ce
 
68b9131
21051ce
68b9131
948e406
 
21051ce
 
514b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e3bf01
 
 
9ee1a46
514b8a9
 
 
 
 
 
 
 
 
 
 
 
591b550
 
 
 
 
 
 
 
 
 
 
 
514b8a9
 
 
 
 
ff11af3
514b8a9
 
8caf90f
514b8a9
 
 
 
 
 
 
6cddb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e3bf01
 
 
9ba5fd1
514b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cddb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba5fd1
69624fd
 
 
 
 
514b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b12fe0
 
 
 
 
 
 
 
 
ea7f72a
3b12fe0
 
514b8a9
 
 
 
 
 
 
 
 
 
 
 
4e3bf01
514b8a9
 
4e3bf01
 
 
 
 
 
 
514b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e3bf01
514b8a9
 
 
 
 
 
948e406
514b8a9
 
ff11af3
 
514b8a9
 
 
7fb4339
948e406
514b8a9
 
6cddb08
 
 
 
 
 
 
 
 
514b8a9
9ba5fd1
bdbc08d
 
e3912fc
bdbc08d
 
 
 
 
 
 
 
514b8a9
 
5c16c19
 
 
514b8a9
 
 
 
 
 
 
 
 
 
 
 
e3912fc
bdbc08d
 
 
 
 
 
 
 
 
 
 
 
 
 
514b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72b826
514b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afef005
514b8a9
 
 
4e3bf01
514b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a17dc1d
514b8a9
 
 
 
 
 
 
 
 
 
 
a17dc1d
 
 
 
514b8a9
 
 
 
fe83a4d
 
 
514b8a9
 
 
 
 
 
 
 
 
 
a17dc1d
514b8a9
 
a17dc1d
 
 
 
 
 
 
 
 
 
 
 
 
 
514b8a9
 
 
 
 
 
 
 
69624fd
591b550
8caf90f
514b8a9
 
 
 
 
 
 
4e3bf01
514b8a9
 
 
9ba5fd1
 
514b8a9
 
 
 
9ba5fd1
514b8a9
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import gradio as gr
import pandas as pd
import numpy as np
from df.enhance import enhance, init_df, load_audio, save_audio
import time
import os
import gradio as gr
import re
from gradio.themes.base import Base
from datasets import load_dataset
from datasets import Dataset,DatasetDict
import librosa
import torch

model_enhance, df_state, _ = init_df()
def Read_DataSet(link):
        dataset = load_dataset(link,token=os.environ.get("auth_acess_data"))
        df = dataset["train"].to_pandas()
        return df




def remove_nn(wav, sample_rate=16000):
    
    audio=librosa.resample(wav,orig_sr=sample_rate,target_sr=df_state.sr(),)
    
    audio=torch.tensor([audio])
  #  audio, _ = load_audio('full_generation.wav', sr=df_state.sr())
    print(audio)
    
    enhanced = enhance(model_enhance, df_state, audio)
    print(enhanced)
   # save_audio("enhanced.wav", enhanced, df_state.sr())
    audiodata=librosa.resample(enhanced[0].numpy(),orig_sr=df_state.sr(),target_sr=sample_rate)
   
    return 16000, audiodata/np.max(audiodata)




class DataViewerApp:
    def __init__(self,df):
        #df=Read_DataSet(link)
        self.df=df
       # self.df1=df
        self.data =self.df[['text','speaker_id','secs','flag']]
        self.dataa =self.df[['text','speaker_id','secs','flag']]
        self.sdata =self.df['audio'].to_list()   # Separate audio data storage
        self.current_page = 0
        self.current_selected = -1
        self.speaker_id= -1
        class Seafoam(Base):
            pass
        self.seafoam = Seafoam()

        #self.data =df[['text','speaker_id']]
        #self.sdata = df['audio'].to_list()  # Separate audio data storage
        #self.current_page = 0
        #self.current_selected = -1
    def set1(self,df):
        self.data =df[['text','speaker_id','secs','flag']]
        self.sdata =df['audio'].to_list()
        return self.get_page_data(self.current_page)
    def settt(self,df):
        self.df=pd.DataFrame()
        self.data =pd.DataFrame()
        self.sdata =[]
        self.df=df
        self.data =df[['text','speaker_id','secs','flag']]
        self.dataa =df[['text','speaker_id','secs','flag']]
        self.sdata =df['audio'].to_list()
        self.current_page = 0
        self.current_selected =1
        self.speaker_id= -1
        return self.data
    def clear(self,text):
        text=re.sub(r'[a-zA-Z]', '', text)
        return text
    def clearenglish(self):
         for i in range(len(self.df)):
             x=self.clear(self.df['text'][i])
             x1=self.df['text'][i]
             if x!=x1:
                self.df.drop(i, inplace=True)

         self.df.reset_index(drop=True, inplace=True)
         return self.settt(self.df)
    def splitt(self,link,num):
        df=download_youtube_video(link,num)
        v=self.settt(df)
        return self.get_page_data(self.current_page),len(v)
    def getdataset(self,link):
        self.link_dataset=link
        df=Read_DataSet(link)
        v=self.settt(df)
        return self.get_page_data(self.current_page),len(v),self.link_dataset
    def remove_hamza_from_alif_and_symbols(self,text):
            text = re.sub(r"[أإآ]", "ا", text)
            text = re.sub(r"ٱ", "ا", text)
            text = re.sub(r"[_\-\+\,\(\)]", " ", text)
            text = re.sub(r"\d", " ", text)
            return text
    def save_row(self, text,data_oudio):
        if text!="" :
                row = self.data.iloc[self.current_selected]
                row['text'] = text
                row['flag']=1
                self.data.iloc[self.current_selected] = row
                sr,audio=data_oudio
                if sr!=16000:
                    audio=audio.astype(np.float32)
                    audio/=np.max(np.abs(audio))
                    audio=librosa.resample(audio,orig_sr=sr,target_sr=16000)
                     
                     
                         
                      
        
                self.sdata[self.current_selected] = audio
                self.df['text'][self.current_selected] =text
                self.df['audio'][self.current_selected] = audio
                self.df['flag'][self.current_selected] =1
        return self.get_page_data(self.current_page),None,""
    def GetDataset_2(self,filename,ds=1.5):
        audios_data = []
        audios_samplerate = []
        num_specker=[]
        texts=[]
        secs=[]

        audiodata,samplerate = librosa.load(filename, sr=16000) # Removed extra indent here
        audios_data.append(audiodata*ds)
        audios_samplerate.append(samplerate)
        texts.append(filename.replace('.wav',''))
        secs.append(round(len(audiodata)/samplerate,2))
        df = pd.DataFrame()
        df['secs'] = secs
        df['audio'] = audios_data
        df['samplerate'] = audios_samplerate
        df['text'] =os.path.splitext(os.path.basename(filename))[0]
        df['speaker_id'] =self.speaker_id
        df['_speaker_id'] =self.speaker_id
        df['flag']=1
        df = df[['text','audio','samplerate','secs','speaker_id','_speaker_id','flag']]
        self.df = pd.concat([self.df, df], axis=0, ignore_index=True)
        self.data =self.df[['text','speaker_id','secs','flag']]
        self.sdata =self.df['audio'].to_list()

        return self.get_page_data(self.current_page)
    def trim_audio(self, text,data_oudio):
        if text!="" :
                audios_data = []
                audios_samplerate = []
                sr,audio=data_oudio
                audio=audio.astype(np.float32)
                audio/=np.max(np.abs(audio))
                audio=librosa.resample(audio,orig_sr=sr,target_sr=16000)
                audios_data.append(audio)
                secs=round(len(audios_data)/16000,2)
                audios_samplerate.append(16000)
                df = pd.DataFrame()
                df['secs'] = secs
                df['audio'] =[ audio]
                df['samplerate'] = 16000
                df['text'] =text
                df['speaker_id'] =self.speaker_id
                df['_speaker_id'] =self.speaker_id
                df['flag']=1
                df = df[['text','audio','samplerate','secs','speaker_id','_speaker_id','flag']]
                self.df = pd.concat([self.df, df], axis=0, ignore_index=True)
                self.data =self.df[['text','speaker_id','secs','flag']]
                self.sdata =self.df['audio'].to_list()
        return self.get_page_data(self.current_page),None,"" 
    def order_data(self):
        self.df[['text','speaker_id','secs','flag']]=self.data
        self.df=self.df.sort_values(by=['flag'], ascending=False)
        vv=self.settt(self.df)
        return vv
    def connect_drive(self):
        from google.colab import drive
        drive.mount('/content/drive')
    def get_page_data(self, page_number):
        start_index = page_number * 10
        end_index = start_index + 10
        return self.data.iloc[start_index:end_index]
    def update_page(self, new_page):
        self.current_page = new_page
        return (
            self.get_page_data(self.current_page),
            self.current_page > 0,
            self.current_page < len(self.data) // 10 - 1,
            self.current_page
        )
    def clear_txt(self):
        self.data['text'] =self.data['text'].apply(self.remove_hamza_from_alif_and_symbols)
        return self.get_page_data(self.current_page)
    def  get_text_from_audio(self,audio):
         if len(audio)!=0:
             sf.write("temp.wav", audio, 16000,format='WAV')
    
             client = Client("MohamedRashad/Arabic-Whisper-CodeSwitching-Edition")
             result = client.predict(
             inputs=handle_file('temp.wav'),
             api_name="/predict_1"
        )
             return result
         else:
            return ""
    
    def on_column_dropdown_change_operater(self,selected_column,selected_column1):
        if selected_column1==">":
            return self.data[self.data['secs'] > selected_column ]
        elif selected_column1=="<":
            return self.data[self.data['secs'] < selected_column]
        elif selected_column1=="=":
            return self.data[self.data['secs'] == selected_column]
        else:
            return self.data
            # Perform actions based on the selected column

    def on_column_dropdown_change(self,selected_column):
        data=self.df
        if selected_column=="all":

            return self.set1(data),len(data)
        elif selected_column=="0":
             data=data[data['flag'] ==0]
             return self.set1(data),len(data)
        else :
            data=data[data['flag'] ==1]
            return self.set1(data),len(data)

    def on_select(self,evt:gr.SelectData):
        index_now = evt.index[0]
        self.current_selected = (self.current_page * 10) + index_now
        row = self.data.iloc[self.current_selected]
        row_audio = self.sdata[self.current_selected]
        self.speaker_id=row['speaker_id']
        return (16000, row_audio), row['text']
    def finsh_data(self):
        self.df['audio'] = self.sdata
        self.df[['text','speaker_id','secs','flag']]=self.data

        return self.df
    def All_enhance(self):
        for i in range(0,len(self.sdata)):
              _,y=remove_nn(self.sdata[i])
              self.sdata[i]=y
        return self.data

        return self.get_page_data(self.current_page)
    def get_output_audio(self):
        return self.sdata[self.current_selected] if self.current_selected >= 0 else None
    def Convert_DataFreme_To_DataSet(self,namedata):
           df=self.df

           df['audio'] = df['audio'].apply(lambda x: np.array(x, dtype=np.float32))
           if "__index_level_0__" in df.columns:
                df =df.drop(columns=["__index_level_0__"])
           train_df =df

         

           ds = {
                "train": Dataset.from_pandas(train_df)
                
                 }

           dataset = DatasetDict(ds)
           dataset.push_to_hub(namedata,token=os.environ.get("auth_acess_data"),private=True)
           return namedata

    def delete_row(self):
        if len(self.data)!=0  or  self.current_selected != -1 :
                self.data.drop(self.current_selected, inplace=True)
                self.data.reset_index(drop=True, inplace=True)
                self.df.drop(self.current_selected, inplace=True)
                self.df.reset_index(drop=True, inplace=True)
                self.sdata.pop(self.current_selected)
                self.current_selected = -1
                # self.audio_player.update(None)  # Clear audio player
                # self.txt_audio.update("")  # Clear text input

        return self.get_page_data(self.current_page),None,""
    def login(self, token):
        # Your actual login logic here (e.g., database check)
        if token == os.environ.get("token_login") :
            return gr.update(visible=False),gr.update(visible=True),True
        else:
            return gr.update(visible=True), gr.update(visible=False),None
    def load_demo(self,sesion):
        if sesion:
            return  gr.update(visible=False),gr.update(visible=True)
        
        return gr.update(visible=True), gr.update(visible=False)
    def start_tab1(self):
        with gr.Blocks(theme=self.seafoam, css="""
         table.svelte-82jkx.svelte-82jkx{
              font-size: x-small;
        }
    .checkbox-group label {
        background-color: #f0f0f5; /* لون خلفية فاتح */
        padding: 10px;
        border-radius: 5px; /* زوايا دائرية */
    }
        const textbox = document.querySelector('.txt_audio'); // تحديد المكون النصي
        textbox.style.direction = 'ltr';
    .checkbox-group input:checked + label {
        background-color: #e0f0ff; /* لون خلفية عند التحديد */
        font-weight: bold;
    }
""") as demo:
            sesion_state = gr.State()
            
            with gr.Column(scale=1, min_width=200,visible=True) as login_panal:  # Login panel
                gr.Markdown("## auth acess page")
                token_login = gr.Textbox(label="token")
              
                login_button = gr.Button("Login")
            with gr.Column(scale=1, visible=False) as main_panel:
                with gr.Row(equal_height=False):
                      with gr.Tabs():
                          with gr.TabItem("Processing Data  "):
                              self.data_Processing()
            login_button.click(self.login, inputs=[token_login], outputs=[login_panal,main_panel,sesion_state])
            demo.load(self.load_demo, [sesion_state], [login_panal,main_panel])


        return demo
    def  create_Tabs(self): # fix: method was missing
        #with gr.Blocks() as interface:
             with gr.Tabs():
                  with gr.TabItem("Excel"):
                       with gr.Row():
                           txt_filepath_excel=gr.Text("NameFile")
                           txt_text_excel=gr.Text("Text" )
                           but_send_excel=gr.Button("Send",size="sm")

                  with gr.TabItem("CVC"):
                          with gr.Row():
                           txt_filepath_cvc=gr.Text("File")
                           txt_text_cvc=gr.Text("Text" )
                           but_send_cvc=gr.Button("Send",size="sm")
                  with gr.TabItem("DateSet"):
                           self.txt_filepath_dir=gr.Text(placeholder="link dir",interactive=True)
                           #self.txt_text=gr.Text("Text" )
                           self.but_send_dir=gr.Button("Send",size="sm")
                  with gr.TabItem("Dir"):
                        txt_filepath_dateSet=gr.Text("link DateSet")
                           #self.txt_text=gr.Text("Text" )
                        but_send_dateSet=gr.Button("Send",size="sm")
                  with gr.TabItem("Cut  Video"):
                       self.txt_filepath_dateSet=gr.Text("رابط الفيديو",interactive=True)
                       self.num = gr.Number(label=" ادخل رقم طبيعي")

                       self.but_send_dateSet_cut=gr.Button("Send",size="sm")

    def Convert_DataFrame_to_Bitch(self):
        with gr.Row():
                           self.txt_output_dir=gr.Text("output Name dir",interactive=True)
                           self.txt_train_batch_size=gr.Text("train_batch_size",interactive=True)
                           self.txt_eval_batch_size=gr.Text("eval_batch_size",interactive=True )
                           self.but_convert_bitch=gr.Button("Convert Bitch",size="sm")
        with gr.Row():
                           self.label_Bitch=gr.Label("Dir Output Bitch :")


    def data_Processing(self):

         #with gr.Column(scale=2,min_width=40):

             #with gr.Row():
                    #with gr.Accordion("Open Data", open=False):
                         #with gr.Row():
                            #  self.txt_filepath_dateSet=gr.Text("link DateSet",interactive=True)
                              #self.txt_text=gr.Text("Text" )
                              #self.but_send_dateSet=gr.Button("Send",size="sm")


         with gr.Accordion("Install Data", open=False):
                with gr.Row():
                              self.create_Tabs()
                with gr.Row():
                             columns = []
                             columns1 = []

                             columns =["all","0","1"]
                             columns.append("all")
                             self.labell=gr.Label("count:")
                             self.column_dropdown = gr.Dropdown(choices=columns, label="speaker_id")
                             with gr.Row():

                                  columns1=unique_speaker_ids =self.df['secs'].unique().tolist()
                                  columns1.append("all")
                                  self.column_dropdown1 = gr.Dropdown(choices=columns1 , label="secs")

                                  self.column_dropdown11 = gr.Dropdown(choices=["all","<",">","="], label="operater")


         with gr.Row():


                   with gr.Column(scale=5):
                        gr.Markdown("## Data Viewer")
                        #d=self.get_page_data(self.current_page)
                        # Correct the indentation here:
                        self.data_table = gr.DataFrame(  # Notice 'self.' here
                            value=self.get_page_data(self.current_page),
                            headers=["Text","speaker_id"])

                   # interactive=True

                        #self.data_table1 = gr.DataFrame(headers=[ "Text","Id_spiker"])
                        with gr.Row(equal_height=False):
                            self.prev_button = gr.Button("<",scale=1, size="sm",min_width=30)
                         
                            self.page_number = gr.Number(value=self.current_page + 1, label="Page",scale=1,min_width=100)
                            self.next_button = gr.Button(">",scale=1, size="sm",min_width=30)

                        with gr.Row(equal_height=False):

                             #inputs=gr.CheckboxGroup(["John", "Mary", "Peter", "Susan"])
                             self.but_cleartxt=gr.Button("clear Text",variant="primary",size="sm",min_width=30)
                             self.btn_all_enhance=gr.Button("All enhance",size="sm",variant="primary",min_width=30)
                             self.btn_ClearEnglish=gr.Button("ClearEnglish",size="sm",variant="primary",min_width=30)










                   with gr.Column(scale=4):
                            gr.Markdown("## Row Data")
                            self.txt_audio = gr.Textbox(label="Text", interactive=True,rtl=True)
                            with gr.Row(equal_height=False):
                                self.audio_player = gr.Audio(label="Audio")
                            with gr.Row(equal_height=False):
                                  self.btn_del = gr.Button("Delete  ", size="sm",variant="primary",min_width=50)
                                  self.btn_save = gr.Button("Save", size="sm",variant="primary",min_width=50)
                                  self.totext=gr.Button("to text",size="sm" ,variant="primary",min_width=50)
                                  
                           # with gr.Row(equal_height=False):
                                 
                                 
                            with gr.Row(equal_height=False):
                                  self.btn_newsave=gr.Button("New Save Cut",size="sm",variant="primary",min_width=50)
                                  self.btn_enhance = gr.Button("enhance ", size="sm",variant="primary",min_width=50)
                                  self.order= gr.Button("order ", size="sm",variant="primary",min_width=50)


         with gr.Row(equal_height=False,variant="heading-1"):
              with gr.Accordion("Save Bitch", open=False):

                                       self.txt_dataset=gr.Text("save dataset",interactive=True)
                                       self.btn_convertDataset=gr.Button("Dir Output Bitch :",variant="primary")
                                       self.label_dataset=gr.Label("count:")
         self.order.click(self.order_data,[],[self.data_table])
         self.btn_ClearEnglish.click(self.clearenglish,[],[self.data_table])
         self.but_send_dir.click(self.getdataset, [self.txt_filepath_dir],[self.data_table,self.labell,self.txt_dataset])
         #self.but_send_dateSet_cut.click(self.splitt, [self.txt_filepath_dateSet,self.num],[self.data_table,self.labell])
         #self.txt_audio.Style(container=False, css=".txt_audio { direction: rtl; }")
         #self.but_send_dateSet.click(self.Read_DataSet, [self.txt_filepath_dateSet],[self.data_table ])
         self.data_table.select(self.on_select, None, [self.audio_player, self.txt_audio])
         self.prev_button.click(lambda page: self.update_page(page - 1), [self.page_number], [self.data_table, self.prev_button, self.next_button, self.page_number])
                   #self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
         self.next_button.click(lambda page: self.update_page(page + 1), [self.page_number], [self.data_table, self.prev_button, self.next_button, self.page_number])
         self.column_dropdown.change(self.on_column_dropdown_change,[self.column_dropdown], [self.data_table,self.labell])
         self.column_dropdown11.change(self.on_column_dropdown_change_operater,[self.column_dropdown1,self.column_dropdown11], [self.data_table])
         self.btn_convertDataset.click(self.Convert_DataFreme_To_DataSet,[self.txt_dataset],[self.label_dataset])
         self.totext.click(lambda:self.get_text_from_audio(self.get_output_audio()), [], self.txt_audio)
         self.btn_newsave.click(self.trim_audio,[self.txt_audio,self.audio_player],[self.data_table,self.audio_player,self.txt_audio])
         self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table,self.audio_player,self.txt_audio])
         #self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
         self.btn_all_enhance.click(self.All_enhance,[],[self.data_table])
         #self.btn_enhance.click(remove_nn, [self.audio_player], [self.audio_player])
         self.but_cleartxt.click(self.clear_txt,[],[self.data_table])
         self.btn_del.click(self.delete_row,[], [self.data_table,self.audio_player,self.txt_audio])
         self.btn_enhance.click(lambda: remove_nn(self.get_output_audio()), [], self.audio_player)
         #self.column_dropdown.change(lambda selected_column:self.settt(self.on_column_dropdown_change(selected_column)), [self.column_dropdown], [self.data_table])
         #self.column_dropdown.change(lambda selected_column:self.settt(x.on_column_dropdown_change(selected_column)), [x.column_dropdown], [self.data_table])
         #self.btn_denoise.click(self.remove_nn, [self.audio_player], [self.audio_player])



dff=pd.DataFrame(columns=['text', 'audio', 'samplerate', 'secs', 'speaker_id', '_speaker_id','flag'])
app=DataViewerApp(dff)
s=app.start_tab1()
s.launch()