Spaces:
Running
Running
File size: 22,279 Bytes
0ee69bd 514b8a9 1c46815 4f56ea6 948e406 7fb4339 0381da2 3cd20a5 514b8a9 ff11af3 514b8a9 21051ce 68b9131 514b8a9 21051ce 514b8a9 21051ce 68b9131 21051ce 68b9131 948e406 21051ce 514b8a9 4e3bf01 9ee1a46 514b8a9 591b550 514b8a9 ff11af3 514b8a9 8caf90f 514b8a9 6cddb08 4e3bf01 9ba5fd1 514b8a9 6cddb08 9ba5fd1 69624fd 514b8a9 3b12fe0 ea7f72a 3b12fe0 514b8a9 4e3bf01 514b8a9 4e3bf01 514b8a9 4e3bf01 514b8a9 948e406 514b8a9 ff11af3 514b8a9 7fb4339 948e406 514b8a9 6cddb08 514b8a9 9ba5fd1 bdbc08d e3912fc bdbc08d 514b8a9 5c16c19 514b8a9 e3912fc bdbc08d 514b8a9 a72b826 514b8a9 afef005 514b8a9 4e3bf01 514b8a9 a17dc1d 514b8a9 a17dc1d 514b8a9 fe83a4d 514b8a9 a17dc1d 514b8a9 a17dc1d 514b8a9 69624fd 591b550 8caf90f 514b8a9 4e3bf01 514b8a9 9ba5fd1 514b8a9 9ba5fd1 514b8a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import gradio as gr
import pandas as pd
import numpy as np
from df.enhance import enhance, init_df, load_audio, save_audio
import time
import os
import gradio as gr
import re
from gradio.themes.base import Base
from datasets import load_dataset
from datasets import Dataset,DatasetDict
import librosa
import torch
model_enhance, df_state, _ = init_df()
def Read_DataSet(link):
dataset = load_dataset(link,token=os.environ.get("auth_acess_data"))
df = dataset["train"].to_pandas()
return df
def remove_nn(wav, sample_rate=16000):
audio=librosa.resample(wav,orig_sr=sample_rate,target_sr=df_state.sr(),)
audio=torch.tensor([audio])
# audio, _ = load_audio('full_generation.wav', sr=df_state.sr())
print(audio)
enhanced = enhance(model_enhance, df_state, audio)
print(enhanced)
# save_audio("enhanced.wav", enhanced, df_state.sr())
audiodata=librosa.resample(enhanced[0].numpy(),orig_sr=df_state.sr(),target_sr=sample_rate)
return 16000, audiodata/np.max(audiodata)
class DataViewerApp:
def __init__(self,df):
#df=Read_DataSet(link)
self.df=df
# self.df1=df
self.data =self.df[['text','speaker_id','secs','flag']]
self.dataa =self.df[['text','speaker_id','secs','flag']]
self.sdata =self.df['audio'].to_list() # Separate audio data storage
self.current_page = 0
self.current_selected = -1
self.speaker_id= -1
class Seafoam(Base):
pass
self.seafoam = Seafoam()
#self.data =df[['text','speaker_id']]
#self.sdata = df['audio'].to_list() # Separate audio data storage
#self.current_page = 0
#self.current_selected = -1
def set1(self,df):
self.data =df[['text','speaker_id','secs','flag']]
self.sdata =df['audio'].to_list()
return self.get_page_data(self.current_page)
def settt(self,df):
self.df=pd.DataFrame()
self.data =pd.DataFrame()
self.sdata =[]
self.df=df
self.data =df[['text','speaker_id','secs','flag']]
self.dataa =df[['text','speaker_id','secs','flag']]
self.sdata =df['audio'].to_list()
self.current_page = 0
self.current_selected =1
self.speaker_id= -1
return self.data
def clear(self,text):
text=re.sub(r'[a-zA-Z]', '', text)
return text
def clearenglish(self):
for i in range(len(self.df)):
x=self.clear(self.df['text'][i])
x1=self.df['text'][i]
if x!=x1:
self.df.drop(i, inplace=True)
self.df.reset_index(drop=True, inplace=True)
return self.settt(self.df)
def splitt(self,link,num):
df=download_youtube_video(link,num)
v=self.settt(df)
return self.get_page_data(self.current_page),len(v)
def getdataset(self,link):
self.link_dataset=link
df=Read_DataSet(link)
v=self.settt(df)
return self.get_page_data(self.current_page),len(v),self.link_dataset
def remove_hamza_from_alif_and_symbols(self,text):
text = re.sub(r"[أإآ]", "ا", text)
text = re.sub(r"ٱ", "ا", text)
text = re.sub(r"[_\-\+\,\(\)]", " ", text)
text = re.sub(r"\d", " ", text)
return text
def save_row(self, text,data_oudio):
if text!="" :
row = self.data.iloc[self.current_selected]
row['text'] = text
row['flag']=1
self.data.iloc[self.current_selected] = row
sr,audio=data_oudio
if sr!=16000:
audio=audio.astype(np.float32)
audio/=np.max(np.abs(audio))
audio=librosa.resample(audio,orig_sr=sr,target_sr=16000)
self.sdata[self.current_selected] = audio
self.df['text'][self.current_selected] =text
self.df['audio'][self.current_selected] = audio
self.df['flag'][self.current_selected] =1
return self.get_page_data(self.current_page),None,""
def GetDataset_2(self,filename,ds=1.5):
audios_data = []
audios_samplerate = []
num_specker=[]
texts=[]
secs=[]
audiodata,samplerate = librosa.load(filename, sr=16000) # Removed extra indent here
audios_data.append(audiodata*ds)
audios_samplerate.append(samplerate)
texts.append(filename.replace('.wav',''))
secs.append(round(len(audiodata)/samplerate,2))
df = pd.DataFrame()
df['secs'] = secs
df['audio'] = audios_data
df['samplerate'] = audios_samplerate
df['text'] =os.path.splitext(os.path.basename(filename))[0]
df['speaker_id'] =self.speaker_id
df['_speaker_id'] =self.speaker_id
df['flag']=1
df = df[['text','audio','samplerate','secs','speaker_id','_speaker_id','flag']]
self.df = pd.concat([self.df, df], axis=0, ignore_index=True)
self.data =self.df[['text','speaker_id','secs','flag']]
self.sdata =self.df['audio'].to_list()
return self.get_page_data(self.current_page)
def trim_audio(self, text,data_oudio):
if text!="" :
audios_data = []
audios_samplerate = []
sr,audio=data_oudio
audio=audio.astype(np.float32)
audio/=np.max(np.abs(audio))
audio=librosa.resample(audio,orig_sr=sr,target_sr=16000)
audios_data.append(audio)
secs=round(len(audios_data)/16000,2)
audios_samplerate.append(16000)
df = pd.DataFrame()
df['secs'] = secs
df['audio'] =[ audio]
df['samplerate'] = 16000
df['text'] =text
df['speaker_id'] =self.speaker_id
df['_speaker_id'] =self.speaker_id
df['flag']=1
df = df[['text','audio','samplerate','secs','speaker_id','_speaker_id','flag']]
self.df = pd.concat([self.df, df], axis=0, ignore_index=True)
self.data =self.df[['text','speaker_id','secs','flag']]
self.sdata =self.df['audio'].to_list()
return self.get_page_data(self.current_page),None,""
def order_data(self):
self.df[['text','speaker_id','secs','flag']]=self.data
self.df=self.df.sort_values(by=['flag'], ascending=False)
vv=self.settt(self.df)
return vv
def connect_drive(self):
from google.colab import drive
drive.mount('/content/drive')
def get_page_data(self, page_number):
start_index = page_number * 10
end_index = start_index + 10
return self.data.iloc[start_index:end_index]
def update_page(self, new_page):
self.current_page = new_page
return (
self.get_page_data(self.current_page),
self.current_page > 0,
self.current_page < len(self.data) // 10 - 1,
self.current_page
)
def clear_txt(self):
self.data['text'] =self.data['text'].apply(self.remove_hamza_from_alif_and_symbols)
return self.get_page_data(self.current_page)
def get_text_from_audio(self,audio):
if len(audio)!=0:
sf.write("temp.wav", audio, 16000,format='WAV')
client = Client("MohamedRashad/Arabic-Whisper-CodeSwitching-Edition")
result = client.predict(
inputs=handle_file('temp.wav'),
api_name="/predict_1"
)
return result
else:
return ""
def on_column_dropdown_change_operater(self,selected_column,selected_column1):
if selected_column1==">":
return self.data[self.data['secs'] > selected_column ]
elif selected_column1=="<":
return self.data[self.data['secs'] < selected_column]
elif selected_column1=="=":
return self.data[self.data['secs'] == selected_column]
else:
return self.data
# Perform actions based on the selected column
def on_column_dropdown_change(self,selected_column):
data=self.df
if selected_column=="all":
return self.set1(data),len(data)
elif selected_column=="0":
data=data[data['flag'] ==0]
return self.set1(data),len(data)
else :
data=data[data['flag'] ==1]
return self.set1(data),len(data)
def on_select(self,evt:gr.SelectData):
index_now = evt.index[0]
self.current_selected = (self.current_page * 10) + index_now
row = self.data.iloc[self.current_selected]
row_audio = self.sdata[self.current_selected]
self.speaker_id=row['speaker_id']
return (16000, row_audio), row['text']
def finsh_data(self):
self.df['audio'] = self.sdata
self.df[['text','speaker_id','secs','flag']]=self.data
return self.df
def All_enhance(self):
for i in range(0,len(self.sdata)):
_,y=remove_nn(self.sdata[i])
self.sdata[i]=y
return self.data
return self.get_page_data(self.current_page)
def get_output_audio(self):
return self.sdata[self.current_selected] if self.current_selected >= 0 else None
def Convert_DataFreme_To_DataSet(self,namedata):
df=self.df
df['audio'] = df['audio'].apply(lambda x: np.array(x, dtype=np.float32))
if "__index_level_0__" in df.columns:
df =df.drop(columns=["__index_level_0__"])
train_df =df
ds = {
"train": Dataset.from_pandas(train_df)
}
dataset = DatasetDict(ds)
dataset.push_to_hub(namedata,token=os.environ.get("auth_acess_data"),private=True)
return namedata
def delete_row(self):
if len(self.data)!=0 or self.current_selected != -1 :
self.data.drop(self.current_selected, inplace=True)
self.data.reset_index(drop=True, inplace=True)
self.df.drop(self.current_selected, inplace=True)
self.df.reset_index(drop=True, inplace=True)
self.sdata.pop(self.current_selected)
self.current_selected = -1
# self.audio_player.update(None) # Clear audio player
# self.txt_audio.update("") # Clear text input
return self.get_page_data(self.current_page),None,""
def login(self, token):
# Your actual login logic here (e.g., database check)
if token == os.environ.get("token_login") :
return gr.update(visible=False),gr.update(visible=True),True
else:
return gr.update(visible=True), gr.update(visible=False),None
def load_demo(self,sesion):
if sesion:
return gr.update(visible=False),gr.update(visible=True)
return gr.update(visible=True), gr.update(visible=False)
def start_tab1(self):
with gr.Blocks(theme=self.seafoam, css="""
table.svelte-82jkx.svelte-82jkx{
font-size: x-small;
}
.checkbox-group label {
background-color: #f0f0f5; /* لون خلفية فاتح */
padding: 10px;
border-radius: 5px; /* زوايا دائرية */
}
const textbox = document.querySelector('.txt_audio'); // تحديد المكون النصي
textbox.style.direction = 'ltr';
.checkbox-group input:checked + label {
background-color: #e0f0ff; /* لون خلفية عند التحديد */
font-weight: bold;
}
""") as demo:
sesion_state = gr.State()
with gr.Column(scale=1, min_width=200,visible=True) as login_panal: # Login panel
gr.Markdown("## auth acess page")
token_login = gr.Textbox(label="token")
login_button = gr.Button("Login")
with gr.Column(scale=1, visible=False) as main_panel:
with gr.Row(equal_height=False):
with gr.Tabs():
with gr.TabItem("Processing Data "):
self.data_Processing()
login_button.click(self.login, inputs=[token_login], outputs=[login_panal,main_panel,sesion_state])
demo.load(self.load_demo, [sesion_state], [login_panal,main_panel])
return demo
def create_Tabs(self): # fix: method was missing
#with gr.Blocks() as interface:
with gr.Tabs():
with gr.TabItem("Excel"):
with gr.Row():
txt_filepath_excel=gr.Text("NameFile")
txt_text_excel=gr.Text("Text" )
but_send_excel=gr.Button("Send",size="sm")
with gr.TabItem("CVC"):
with gr.Row():
txt_filepath_cvc=gr.Text("File")
txt_text_cvc=gr.Text("Text" )
but_send_cvc=gr.Button("Send",size="sm")
with gr.TabItem("DateSet"):
self.txt_filepath_dir=gr.Text(placeholder="link dir",interactive=True)
#self.txt_text=gr.Text("Text" )
self.but_send_dir=gr.Button("Send",size="sm")
with gr.TabItem("Dir"):
txt_filepath_dateSet=gr.Text("link DateSet")
#self.txt_text=gr.Text("Text" )
but_send_dateSet=gr.Button("Send",size="sm")
with gr.TabItem("Cut Video"):
self.txt_filepath_dateSet=gr.Text("رابط الفيديو",interactive=True)
self.num = gr.Number(label=" ادخل رقم طبيعي")
self.but_send_dateSet_cut=gr.Button("Send",size="sm")
def Convert_DataFrame_to_Bitch(self):
with gr.Row():
self.txt_output_dir=gr.Text("output Name dir",interactive=True)
self.txt_train_batch_size=gr.Text("train_batch_size",interactive=True)
self.txt_eval_batch_size=gr.Text("eval_batch_size",interactive=True )
self.but_convert_bitch=gr.Button("Convert Bitch",size="sm")
with gr.Row():
self.label_Bitch=gr.Label("Dir Output Bitch :")
def data_Processing(self):
#with gr.Column(scale=2,min_width=40):
#with gr.Row():
#with gr.Accordion("Open Data", open=False):
#with gr.Row():
# self.txt_filepath_dateSet=gr.Text("link DateSet",interactive=True)
#self.txt_text=gr.Text("Text" )
#self.but_send_dateSet=gr.Button("Send",size="sm")
with gr.Accordion("Install Data", open=False):
with gr.Row():
self.create_Tabs()
with gr.Row():
columns = []
columns1 = []
columns =["all","0","1"]
columns.append("all")
self.labell=gr.Label("count:")
self.column_dropdown = gr.Dropdown(choices=columns, label="speaker_id")
with gr.Row():
columns1=unique_speaker_ids =self.df['secs'].unique().tolist()
columns1.append("all")
self.column_dropdown1 = gr.Dropdown(choices=columns1 , label="secs")
self.column_dropdown11 = gr.Dropdown(choices=["all","<",">","="], label="operater")
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("## Data Viewer")
#d=self.get_page_data(self.current_page)
# Correct the indentation here:
self.data_table = gr.DataFrame( # Notice 'self.' here
value=self.get_page_data(self.current_page),
headers=["Text","speaker_id"])
# interactive=True
#self.data_table1 = gr.DataFrame(headers=[ "Text","Id_spiker"])
with gr.Row(equal_height=False):
self.prev_button = gr.Button("<",scale=1, size="sm",min_width=30)
self.page_number = gr.Number(value=self.current_page + 1, label="Page",scale=1,min_width=100)
self.next_button = gr.Button(">",scale=1, size="sm",min_width=30)
with gr.Row(equal_height=False):
#inputs=gr.CheckboxGroup(["John", "Mary", "Peter", "Susan"])
self.but_cleartxt=gr.Button("clear Text",variant="primary",size="sm",min_width=30)
self.btn_all_enhance=gr.Button("All enhance",size="sm",variant="primary",min_width=30)
self.btn_ClearEnglish=gr.Button("ClearEnglish",size="sm",variant="primary",min_width=30)
with gr.Column(scale=4):
gr.Markdown("## Row Data")
self.txt_audio = gr.Textbox(label="Text", interactive=True,rtl=True)
with gr.Row(equal_height=False):
self.audio_player = gr.Audio(label="Audio")
with gr.Row(equal_height=False):
self.btn_del = gr.Button("Delete ", size="sm",variant="primary",min_width=50)
self.btn_save = gr.Button("Save", size="sm",variant="primary",min_width=50)
self.totext=gr.Button("to text",size="sm" ,variant="primary",min_width=50)
# with gr.Row(equal_height=False):
with gr.Row(equal_height=False):
self.btn_newsave=gr.Button("New Save Cut",size="sm",variant="primary",min_width=50)
self.btn_enhance = gr.Button("enhance ", size="sm",variant="primary",min_width=50)
self.order= gr.Button("order ", size="sm",variant="primary",min_width=50)
with gr.Row(equal_height=False,variant="heading-1"):
with gr.Accordion("Save Bitch", open=False):
self.txt_dataset=gr.Text("save dataset",interactive=True)
self.btn_convertDataset=gr.Button("Dir Output Bitch :",variant="primary")
self.label_dataset=gr.Label("count:")
self.order.click(self.order_data,[],[self.data_table])
self.btn_ClearEnglish.click(self.clearenglish,[],[self.data_table])
self.but_send_dir.click(self.getdataset, [self.txt_filepath_dir],[self.data_table,self.labell,self.txt_dataset])
#self.but_send_dateSet_cut.click(self.splitt, [self.txt_filepath_dateSet,self.num],[self.data_table,self.labell])
#self.txt_audio.Style(container=False, css=".txt_audio { direction: rtl; }")
#self.but_send_dateSet.click(self.Read_DataSet, [self.txt_filepath_dateSet],[self.data_table ])
self.data_table.select(self.on_select, None, [self.audio_player, self.txt_audio])
self.prev_button.click(lambda page: self.update_page(page - 1), [self.page_number], [self.data_table, self.prev_button, self.next_button, self.page_number])
#self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
self.next_button.click(lambda page: self.update_page(page + 1), [self.page_number], [self.data_table, self.prev_button, self.next_button, self.page_number])
self.column_dropdown.change(self.on_column_dropdown_change,[self.column_dropdown], [self.data_table,self.labell])
self.column_dropdown11.change(self.on_column_dropdown_change_operater,[self.column_dropdown1,self.column_dropdown11], [self.data_table])
self.btn_convertDataset.click(self.Convert_DataFreme_To_DataSet,[self.txt_dataset],[self.label_dataset])
self.totext.click(lambda:self.get_text_from_audio(self.get_output_audio()), [], self.txt_audio)
self.btn_newsave.click(self.trim_audio,[self.txt_audio,self.audio_player],[self.data_table,self.audio_player,self.txt_audio])
self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table,self.audio_player,self.txt_audio])
#self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
self.btn_all_enhance.click(self.All_enhance,[],[self.data_table])
#self.btn_enhance.click(remove_nn, [self.audio_player], [self.audio_player])
self.but_cleartxt.click(self.clear_txt,[],[self.data_table])
self.btn_del.click(self.delete_row,[], [self.data_table,self.audio_player,self.txt_audio])
self.btn_enhance.click(lambda: remove_nn(self.get_output_audio()), [], self.audio_player)
#self.column_dropdown.change(lambda selected_column:self.settt(self.on_column_dropdown_change(selected_column)), [self.column_dropdown], [self.data_table])
#self.column_dropdown.change(lambda selected_column:self.settt(x.on_column_dropdown_change(selected_column)), [x.column_dropdown], [self.data_table])
#self.btn_denoise.click(self.remove_nn, [self.audio_player], [self.audio_player])
dff=pd.DataFrame(columns=['text', 'audio', 'samplerate', 'secs', 'speaker_id', '_speaker_id','flag'])
app=DataViewerApp(dff)
s=app.start_tab1()
s.launch() |