wasm-dataset / app.py
ASG Models
Update app.py
a17dc1d verified
raw
history blame
20.7 kB
import gradio as gr
import pandas as pd
import numpy as np
from df.enhance import enhance, init_df, load_audio, save_audio
import time
import os
import gradio as gr
import re
from gradio.themes.base import Base
from datasets import load_dataset
from datasets import Dataset,DatasetDict
import librosa
import torch
model_enhance, df_state, _ = init_df()
def Read_DataSet(link):
dataset = load_dataset(link,token=os.environ.get("auth_acess_data"))
df = dataset["train"].to_pandas()
return df
def remove_nn(wav, sample_rate=16000):
audio=librosa.resample(wav,orig_sr=sample_rate,target_sr=df_state.sr(),)
audio=torch.tensor([audio])
# audio, _ = load_audio('full_generation.wav', sr=df_state.sr())
print(audio)
enhanced = enhance(model_enhance, df_state, audio)
print(enhanced)
# save_audio("enhanced.wav", enhanced, df_state.sr())
audiodata=librosa.resample(enhanced[0].numpy(),orig_sr=df_state.sr(),target_sr=sample_rate)
return 16000, audiodata/np.max(audiodata)
class DataViewerApp:
def __init__(self,df):
#df=Read_DataSet(link)
self.df=df
# self.df1=df
self.data =self.df[['text','speaker_id','secs','flag']]
self.dataa =self.df[['text','speaker_id','secs','flag']]
self.sdata =self.df['audio'].to_list() # Separate audio data storage
self.current_page = 0
self.current_selected = -1
self.speaker_id= -1
class Seafoam(Base):
pass
self.seafoam = Seafoam()
#self.data =df[['text','speaker_id']]
#self.sdata = df['audio'].to_list() # Separate audio data storage
#self.current_page = 0
#self.current_selected = -1
def settt(self,df):
self.df=pd.DataFrame()
self.data =pd.DataFrame()
self.sdata =[]
self.df=df
self.data =df[['text','speaker_id','secs','flag']]
self.dataa =df[['text','speaker_id','secs','flag']]
self.sdata =df['audio'].to_list()
self.current_page = 0
self.current_selected =1
self.speaker_id= -1
return self.data
def clear(self,text):
text=re.sub(r'[a-zA-Z]', '', text)
return text
def clearenglish(self):
for i in range(len(self.df)):
x=self.clear(self.df['text'][i])
x1=self.df['text'][i]
if x!=x1:
self.df.drop(i, inplace=True)
self.df.reset_index(drop=True, inplace=True)
return self.settt(self.df)
def splitt(self,link,num):
df=download_youtube_video(link,num)
v=self.settt(df)
return self.get_page_data(self.current_page),len(v)
def getdataset(self,link):
self.link_dataset=link
df=Read_DataSet(link)
v=self.settt(df)
return self.get_page_data(self.current_page),len(v)
def remove_hamza_from_alif_and_symbols(self,text):
text = re.sub(r"[أإآ]", "ا", text)
text = re.sub(r"ٱ", "ا", text)
text = re.sub(r"[_\-\+\,\(\)]", " ", text)
text = re.sub(r"\d", " ", text)
return text
def save_row(self, text,data_oudio):
row = self.data.iloc[self.current_selected]
row['text'] = text
row['flag']=1
self.data.iloc[self.current_selected] = row
sr,audio=data_oudio
if sr!=16000:
audio=audio.astype(np.float32)
audio/=np.max(np.abs(audio))
audio=librosa.resample(audio,orig_sr=sr,target_sr=16000)
self.sdata[self.current_selected] = audio
return self.get_page_data(self.current_page)
def GetDataset_2(self,filename,ds=1.5):
audios_data = []
audios_samplerate = []
num_specker=[]
texts=[]
secs=[]
audiodata,samplerate = librosa.load(filename, sr=16000) # Removed extra indent here
audios_data.append(audiodata*ds)
audios_samplerate.append(samplerate)
texts.append(filename.replace('.wav',''))
secs.append(round(len(audiodata)/samplerate,2))
df = pd.DataFrame()
df['secs'] = secs
df['audio'] = audios_data
df['samplerate'] = audios_samplerate
df['text'] =os.path.splitext(os.path.basename(filename))[0]
df['speaker_id'] =self.speaker_id
df['_speaker_id'] =self.speaker_id
df['flag']=1
df = df[['text','audio','samplerate','secs','speaker_id','_speaker_id','flag']]
self.df = pd.concat([self.df, df], axis=0, ignore_index=True)
self.data =self.df[['text','speaker_id','secs','flag']]
self.sdata =self.df['audio'].to_list()
return self.get_page_data(self.current_page)
def trim_audio(self, text,data_oudio):
audios_data = []
audios_samplerate = []
sr,audio=data_oudio
audio=audio.astype(np.float32)
audio/=np.max(np.abs(audio))
audio=librosa.resample(audio,orig_sr=sr,target_sr=16000)
audios_data.append(audio)
secs=round(len(audios_data)/16000,2)
audios_samplerate.append(16000)
df = pd.DataFrame()
df['secs'] = secs
df['audio'] =[ audio]
df['samplerate'] = 16000
df['text'] =text
df['speaker_id'] =self.speaker_id
df['_speaker_id'] =self.speaker_id
df['flag']=1
df = df[['text','audio','samplerate','secs','speaker_id','_speaker_id','flag']]
self.df = pd.concat([self.df, df], axis=0, ignore_index=True)
self.data =self.df[['text','speaker_id','secs','flag']]
self.sdata =self.df['audio'].to_list()
return self.get_page_data(self.current_page)
def connect_drive(self):
from google.colab import drive
drive.mount('/content/drive')
def get_page_data(self, page_number):
start_index = page_number * 10
end_index = start_index + 10
return self.data.iloc[start_index:end_index]
def update_page(self, new_page):
self.current_page = new_page
return (
self.get_page_data(self.current_page),
self.current_page > 0,
self.current_page < len(self.data) // 10 - 1,
self.current_page
)
def clear_txt(self):
self.data['text'] =self.data['text'].apply(self.remove_hamza_from_alif_and_symbols)
return self.get_page_data(self.current_page)
def get_text_from_audio(self,audio):
sf.write("temp.wav", audio, 16000,format='WAV')
client = Client("MohamedRashad/Arabic-Whisper-CodeSwitching-Edition")
result = client.predict(
inputs=handle_file('temp.wav'),
api_name="/predict_1"
)
return result
def on_column_dropdown_change_operater(self,selected_column,selected_column1):
if selected_column1==">":
return self.data[self.data['secs'] > selected_column ]
elif selected_column1=="<":
return self.data[self.data['secs'] < selected_column]
elif selected_column1=="=":
return self.data[self.data['secs'] == selected_column]
else:
return self.data
# Perform actions based on the selected column
def on_column_dropdown_change(self,selected_column):
data=self.df1
if selected_column=="all":
return self.settt(data)
else:
data=data[data['speaker_id'] ==selected_column]
return self.settt(data)
# Perform actions based on the selected column
def on_select(self,evt:gr.SelectData):
index_now = evt.index[0]
self.current_selected = (self.current_page * 10) + index_now
row = self.data.iloc[self.current_selected]
row_audio = self.sdata[self.current_selected]
self.speaker_id=row['speaker_id']
return (16000, row_audio), row['text']
def finsh_data(self):
self.df['audio'] = self.sdata
self.df[['text','speaker_id','secs','flag']]=self.data
return self.df
def All_enhance(self):
for i in range(0,len(self.sdata)):
_,y=remove_nn(self.sdata[i])
self.sdata[i]=y
return self.data
return self.get_page_data(self.current_page)
def get_output_audio(self):
return self.sdata[self.current_selected] if self.current_selected >= 0 else None
def Convert_DataFreme_To_DataSet(self,namedata):
df=self.finsh_data()
df['audio'] = df['audio'].apply(lambda x: np.array(x, dtype=np.float32))
if "__index_level_0__" in df.columns:
df =df.drop(columns=["__index_level_0__"])
train_df =df
ds = {
"train": Dataset.from_pandas(train_df)
}
dataset = DatasetDict(ds)
dataset.push_to_hub(namedata,token=os.environ.get("auth_acess_data"),private=True)
return namedata
def delete_row(self):
self.data.drop(self.current_selected, inplace=True)
self.data.reset_index(drop=True, inplace=True)
self.df.drop(self.current_selected, inplace=True)
self.df.reset_index(drop=True, inplace=True)
self.sdata.pop(self.current_selected)
self.current_selected = -1
# self.audio_player.update(None) # Clear audio player
# self.txt_audio.update("") # Clear text input
return self.get_page_data(self.current_page)
def login(self, token):
# Your actual login logic here (e.g., database check)
if token == os.environ.get("token_login") :
return gr.update(visible=False),gr.update(visible=True),True
else:
return gr.update(visible=True), gr.update(visible=False),None
def load_demo(self,sesion):
if sesion:
return gr.update(visible=False),gr.update(visible=True)
return gr.update(visible=True), gr.update(visible=False)
def start_tab1(self):
with gr.Blocks(theme=self.seafoam, css="""
.checkbox-group label {
background-color: #f0f0f5; /* لون خلفية فاتح */
padding: 10px;
border-radius: 5px; /* زوايا دائرية */
}
const textbox = document.querySelector('.txt_audio'); // تحديد المكون النصي
textbox.style.direction = 'ltr';
.checkbox-group input:checked + label {
background-color: #e0f0ff; /* لون خلفية عند التحديد */
font-weight: bold;
}
""") as demo:
sesion_state = gr.State()
with gr.Column(scale=1, min_width=200,visible=True) as login_panal: # Login panel
gr.Markdown("## auth acess page")
token_login = gr.Textbox(label="token")
login_button = gr.Button("Login")
with gr.Column(scale=1, visible=False) as main_panel:
with gr.Row(equal_height=False):
with gr.Tabs():
with gr.TabItem("Processing Data "):
self.data_Processing()
login_button.click(self.login, inputs=[token_login], outputs=[login_panal,main_panel,sesion_state])
demo.load(self.load_demo, [sesion_state], [login_panal,main_panel])
return demo
def create_Tabs(self): # fix: method was missing
#with gr.Blocks() as interface:
with gr.Tabs():
with gr.TabItem("Excel"):
with gr.Row():
txt_filepath_excel=gr.Text("NameFile")
txt_text_excel=gr.Text("Text" )
but_send_excel=gr.Button("Send",size="sm")
with gr.TabItem("CVC"):
with gr.Row():
txt_filepath_cvc=gr.Text("File")
txt_text_cvc=gr.Text("Text" )
but_send_cvc=gr.Button("Send",size="sm")
with gr.TabItem("DateSet"):
self.txt_filepath_dir=gr.Text(placeholder="link dir",interactive=True)
#self.txt_text=gr.Text("Text" )
self.but_send_dir=gr.Button("Send",size="sm")
with gr.TabItem("Dir"):
txt_filepath_dateSet=gr.Text("link DateSet")
#self.txt_text=gr.Text("Text" )
but_send_dateSet=gr.Button("Send",size="sm")
with gr.TabItem("Cut Video"):
self.txt_filepath_dateSet=gr.Text("رابط الفيديو",interactive=True)
self.num = gr.Number(label=" ادخل رقم طبيعي")
self.but_send_dateSet_cut=gr.Button("Send",size="sm")
def Convert_DataFrame_to_Bitch(self):
with gr.Row():
self.txt_output_dir=gr.Text("output Name dir",interactive=True)
self.txt_train_batch_size=gr.Text("train_batch_size",interactive=True)
self.txt_eval_batch_size=gr.Text("eval_batch_size",interactive=True )
self.but_convert_bitch=gr.Button("Convert Bitch",size="sm")
with gr.Row():
self.label_Bitch=gr.Label("Dir Output Bitch :")
def data_Processing(self):
#with gr.Column(scale=2,min_width=40):
#with gr.Row():
#with gr.Accordion("Open Data", open=False):
#with gr.Row():
# self.txt_filepath_dateSet=gr.Text("link DateSet",interactive=True)
#self.txt_text=gr.Text("Text" )
#self.but_send_dateSet=gr.Button("Send",size="sm")
with gr.Accordion("Install Data", open=False):
with gr.Row():
self.create_Tabs()
with gr.Row():
columns = []
columns1 = []
columns =unique_speaker_ids =self.df['speaker_id'].unique().tolist()
columns.append("all")
self.labell=gr.Label("count:")
self.column_dropdown = gr.Dropdown(choices=columns, label="speaker_id")
with gr.Row():
columns1=unique_speaker_ids =self.df['secs'].unique().tolist()
columns1.append("all")
self.column_dropdown1 = gr.Dropdown(choices=columns1 , label="secs")
self.column_dropdown11 = gr.Dropdown(choices=["all","<",">","="], label="operater")
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("## Data Viewer")
#d=self.get_page_data(self.current_page)
# Correct the indentation here:
self.data_table = gr.DataFrame( # Notice 'self.' here
value=self.get_page_data(self.current_page),
headers=["Text","speaker_id"])
# interactive=True
#self.data_table1 = gr.DataFrame(headers=[ "Text","Id_spiker"])
with gr.Row(equal_height=False):
self.prev_button = gr.Button("<",scale=1, size="sm",min_width=30)
self.page_number = gr.Number(value=self.current_page + 1, label="Page",scale=1,min_width=100)
self.next_button = gr.Button(">",scale=1, size="sm",min_width=30)
with gr.Row(equal_height=False):
#inputs=gr.CheckboxGroup(["John", "Mary", "Peter", "Susan"])
self.but_cleartxt=gr.Button("clear Text",variant="primary",size="sm")
self.btn_all_enhance=gr.Button("All enhance",size="sm",variant="primary")
with gr.Column(scale=4):
gr.Markdown("## Row Data")
self.txt_audio = gr.Textbox(label="Text", interactive=True,rtl=True)
with gr.Row(equal_height=False):
self.audio_player = gr.Audio(label="Audio")
with gr.Row(equal_height=False):
self.btn_del = gr.Button("Delete ", size="sm",variant="primary",min_width=50)
self.btn_save = gr.Button("Save", size="sm",variant="primary",min_width=50)
self.totext=gr.Button("to text",size="sm" ,variant="primary",min_width=50)
# with gr.Row(equal_height=False):
with gr.Row(equal_height=False):
self.btn_newsave=gr.Button("New Save Cut",size="sm",variant="primary",min_width=50)
self.btn_enhance = gr.Button("enhance ", size="sm",variant="primary",min_width=50)
self.order= gr.Button("order ", size="sm",variant="primary",min_width=50)
with gr.Row(equal_height=False,variant="heading-1"):
with gr.Accordion("Save Bitch", open=False):
self.txt_dataset=gr.Text("save dataset",interactive=True)
self.btn_convertDataset=gr.Button("Dir Output Bitch :",variant="primary")
self.label_dataset=gr.Label("count:")
self.btn_ClearEnglish.click(self.clearenglish,[],[self.data_table])
self.but_send_dir.click(self.getdataset, [self.txt_filepath_dir],[self.data_table,self.labell])
#self.but_send_dateSet_cut.click(self.splitt, [self.txt_filepath_dateSet,self.num],[self.data_table,self.labell])
#self.txt_audio.Style(container=False, css=".txt_audio { direction: rtl; }")
#self.but_send_dateSet.click(self.Read_DataSet, [self.txt_filepath_dateSet],[self.data_table ])
self.data_table.select(self.on_select, None, [self.audio_player, self.txt_audio])
self.prev_button.click(lambda page: self.update_page(page - 1), [self.page_number], [self.data_table, self.prev_button, self.next_button, self.page_number])
#self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
self.next_button.click(lambda page: self.update_page(page + 1), [self.page_number], [self.data_table, self.prev_button, self.next_button, self.page_number])
self.column_dropdown.change(self.on_column_dropdown_change,[self.column_dropdown], [self.data_table])
self.column_dropdown11.change(self.on_column_dropdown_change_operater,[self.column_dropdown1,self.column_dropdown11], [self.data_table])
self.btn_convertDataset.click(self.Convert_DataFreme_To_DataSet,[self.txt_dataset],[self.label_dataset])
self.totext.click(lambda:self.get_text_from_audio(self.get_output_audio()), [], self.txt_audio)
self.btn_newsave.click(self.trim_audio,[self.txt_audio,self.audio_player],[self.data_table])
self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
#self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
self.btn_all_enhance.click(self.All_enhance,[],[self.data_table])
#self.btn_enhance.click(remove_nn, [self.audio_player], [self.audio_player])
self.but_cleartxt.click(self.clear_txt,[],[self.data_table])
self.btn_del.click(self.delete_row,[], [self.data_table])
self.btn_enhance.click(lambda: remove_nn(self.get_output_audio()), [], self.audio_player)
#self.column_dropdown.change(lambda selected_column:self.settt(self.on_column_dropdown_change(selected_column)), [self.column_dropdown], [self.data_table])
#self.column_dropdown.change(lambda selected_column:self.settt(x.on_column_dropdown_change(selected_column)), [x.column_dropdown], [self.data_table])
#self.btn_denoise.click(self.remove_nn, [self.audio_player], [self.audio_player])
dff=pd.DataFrame(columns=['text', 'audio', 'samplerate', 'secs', 'speaker_id', '_speaker_id','flag'])
app=DataViewerApp(dff)
s=app.start_tab1()
s.launch()