Spaces:
Runtime error
Runtime error
File size: 14,524 Bytes
9066a31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import shutil
import subprocess
import timm
import spaces
import io
import base64
import torch
import gradio as gr
import os
from PIL import Image
import tempfile
from huggingface_hub import snapshot_download
from transformers import TextIteratorStreamer
from threading import Thread
from diffusers import StableDiffusionXLPipeline
from minigemini.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from minigemini.mm_utils import process_images, load_image_from_base64, tokenizer_image_token
from minigemini.conversation import default_conversation, conv_templates, SeparatorStyle, Conversation
from minigemini.serve.gradio_web_server import function_markdown, tos_markdown, learn_more_markdown, title_markdown, block_css
from minigemini.model.builder import load_pretrained_model
# os.system('python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html')
# os.system('pip install paddleocr>=2.0.1')
# from paddleocr import PaddleOCR
def download_model(repo_id):
local_dir = os.path.join('./checkpoints', repo_id.split('/')[-1])
os.makedirs(local_dir)
snapshot_download(repo_id=repo_id, local_dir=local_dir, local_dir_use_symlinks=False)
if not os.path.exists('./checkpoints/'):
os.makedirs('./checkpoints/')
download_model('YanweiLi/Mini-Gemini-13B-HD')
download_model('laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup')
device = "cuda" if torch.cuda.is_available() else "cpu"
load_8bit = False
load_4bit = False
dtype = torch.float16
conv_mode = "vicuna_v1"
model_path = './checkpoints/Mini-Gemini-13B-HD'
model_name = 'Mini-Gemini-13B-HD'
model_base = None
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name,
load_8bit, load_4bit,
device=device)
diffusion_pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True, variant="fp16"
).to(device=device)
if hasattr(model.config, 'image_size_aux'):
if not hasattr(image_processor, 'image_size_raw'):
image_processor.image_size_raw = image_processor.crop_size.copy()
image_processor.crop_size['height'] = model.config.image_size_aux
image_processor.crop_size['width'] = model.config.image_size_aux
image_processor.size['shortest_edge'] = model.config.image_size_aux
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
def upvote_last_response(state):
return ("",) + (disable_btn,) * 3
def downvote_last_response(state):
return ("",) + (disable_btn,) * 3
def flag_last_response(state):
return ("",) + (disable_btn,) * 3
def clear_history():
state = conv_templates[conv_mode].copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def process_image(prompt, images):
if images is not None and len(images) > 0:
image_convert = images
# Similar operation in model_worker.py
image_tensor = process_images(image_convert, image_processor, model.config)
image_grid = getattr(model.config, 'image_grid', 1)
if hasattr(model.config, 'image_size_aux'):
raw_shape = [image_processor.image_size_raw['height'] * image_grid,
image_processor.image_size_raw['width'] * image_grid]
image_tensor_aux = image_tensor
image_tensor = torch.nn.functional.interpolate(image_tensor,
size=raw_shape,
mode='bilinear',
align_corners=False)
else:
image_tensor_aux = []
if image_grid >= 2:
raw_image = image_tensor.reshape(3,
image_grid,
image_processor.image_size_raw['height'],
image_grid,
image_processor.image_size_raw['width'])
raw_image = raw_image.permute(1, 3, 0, 2, 4)
raw_image = raw_image.reshape(-1, 3,
image_processor.image_size_raw['height'],
image_processor.image_size_raw['width'])
if getattr(model.config, 'image_global', False):
global_image = image_tensor
if len(global_image.shape) == 3:
global_image = global_image[None]
global_image = torch.nn.functional.interpolate(global_image,
size=[image_processor.image_size_raw['height'],
image_processor.image_size_raw['width']],
mode='bilinear',
align_corners=False)
# [image_crops, image_global]
raw_image = torch.cat([raw_image, global_image], dim=0)
image_tensor = raw_image.contiguous()
image_tensor = image_tensor.unsqueeze(0)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
image_tensor_aux = [image.to(model.device, dtype=torch.float16) for image in image_tensor_aux]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
image_tensor_aux = image_tensor_aux.to(model.device, dtype=torch.float16)
else:
images = None
image_tensor = None
image_tensor_aux = []
image_tensor_aux = image_tensor_aux if len(image_tensor_aux) > 0 else None
replace_token = DEFAULT_IMAGE_TOKEN
if getattr(model.config, 'mm_use_im_start_end', False):
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
image_args = {"images": image_tensor, "images_aux": image_tensor_aux}
return prompt, image_args
@spaces.GPU
def generate(state, imagebox, textbox, image_process_mode, gen_image, temperature, top_p, max_output_tokens):
prompt = state.get_prompt()
images = state.get_images(return_pil=True)
prompt, image_args = process_image(prompt, images)
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to("cuda:0")
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=30)
max_new_tokens = 512
do_sample = True if temperature > 0.001 else False
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
**image_args
))
thread.start()
generated_text = ''
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
state.messages[-1][-1] = generated_text
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
if gen_image == 'Yes' and '<h>' in generated_text and '</h>' in generated_text:
common_neg_prompt = "out of frame, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"
prompt = generated_text.split("<h>")[1].split("</h>")[0]
generated_text = generated_text.split("<h>")[0] + '\n' + 'Prompt: ' + prompt + '\n'
torch.cuda.empty_cache()
output_img = diffusion_pipe(prompt, negative_prompt=common_neg_prompt).images[0]
buffered = io.BytesIO()
output_img.save(buffered, format='JPEG')
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
output = (generated_text, img_b64_str)
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
torch.cuda.empty_cache()
@spaces.GPU
def add_text(state, imagebox, textbox, image_process_mode, gen_image):
if state is None:
state = conv_templates[conv_mode].copy()
if imagebox is not None:
textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox
image = Image.open(imagebox).convert('RGB')
if gen_image == 'Yes':
textbox = textbox + ' <GEN>'
if imagebox is not None:
textbox = (textbox, image, image_process_mode)
state.append_message(state.roles[0], textbox)
state.append_message(state.roles[1], None)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def delete_text(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title='Mini-Gemini') as demo:
gr.Markdown(title_markdown)
# state = default_conversation.copy()
state = gr.State()
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(label="Input Image", type="filepath")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
gr.Examples(examples=[
["./minigemini/serve/examples/monday.jpg", "Explain why this meme is funny, and generate a picture when the weekend coming."],
["./minigemini/serve/examples/woolen.png", "Show me one idea of what I could make with this?"],
["./minigemini/serve/examples/extreme_ironing.jpg", "What is unusual about this image?"],
["./minigemini/serve/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
], inputs=[imagebox, textbox])
with gr.Accordion("Function", open=True) as parameter_row:
gen_image = gr.Radio(choices=['Yes', 'No'], value='No', interactive=True, label="Generate Image")
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=7):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="Mini-Gemini Chatbot",
height=850,
layout="panel",
)
with gr.Row():
with gr.Column(scale=7):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=False)
downvote_btn = gr.Button(value="π Downvote", interactive=False)
flag_btn = gr.Button(value="β οΈ Flag", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
gr.Markdown(function_markdown)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
downvote_btn.click(
downvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
flag_btn.click(
flag_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
regenerate_btn.click(
delete_text,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, gen_image, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
textbox.submit(
add_text,
[state, imagebox, textbox, image_process_mode, gen_image],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, gen_image, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
submit_btn.click(
add_text,
[state, imagebox, textbox, image_process_mode, gen_image],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, gen_image, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
demo.launch(debug=True)
|