Spaces:
Build error
Build error
File size: 10,534 Bytes
0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 8ac8977 0ab9a32 40bbb34 0ab9a32 40bbb34 76e50b1 8ac8977 0ab9a32 40bbb34 0bfd6ca 24ff5c7 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 9c026e6 0ab9a32 40bbb34 0ab9a32 8ac8977 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 40bbb34 0ab9a32 c8cfbb8 f82f439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from io import BytesIO
import string
import gradio as gr
import requests
from caption_anything import CaptionAnything
import torch
import json
from diffusers import StableDiffusionInpaintPipeline
import sys
import argparse
from caption_anything import parse_augment
import numpy as np
import PIL.ImageDraw as ImageDraw
from image_editing_utils import create_bubble_frame
import copy
from tools import mask_painter
from PIL import Image
import os
import cv2
def download_checkpoint(url, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
response = requests.get(url, stream=True)
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
return filepath
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
folder = "segmenter"
filename = "sam_vit_h_4b8939.pth"
download_checkpoint(checkpoint_url, folder, filename)
title = """<h1 align="center">Edit Anything</h1>"""
description = """Gradio demo for Segment Anything, image to dense Segment generation with various language styles. To use it, simply upload your image, or click one of the examples to load them.
"""
examples = [
["test_img/img35.webp"],
["test_img/img2.jpg"],
["test_img/img5.jpg"],
["test_img/img12.jpg"],
["test_img/img14.jpg"],
["test_img/img0.png"],
["test_img/img1.jpg"],
]
args = parse_augment()
# args.device = 'cuda:5'
# args.disable_gpt = False
# args.enable_reduce_tokens = True
# args.port=20322
model = CaptionAnything(args)
def init_openai_api_key(api_key):
# os.environ['OPENAI_API_KEY'] = api_key
model.init_refiner(api_key)
openai_available = model.text_refiner is not None
return gr.update(visible = openai_available), gr.update(visible = openai_available), gr.update(visible = openai_available), gr.update(visible = True), gr.update(visible = True)
def get_prompt(chat_input, click_state):
points = click_state[0]
labels = click_state[1]
inputs = json.loads(chat_input)
for input in inputs:
points.append(input[:2])
labels.append(input[2])
prompt = {
"prompt_type":["click"],
"input_point":points,
"input_label":labels,
"multimask_output":"True",
}
return prompt
def chat_with_points(chat_input, click_state, state, mask,image_input):
points, labels, captions = click_state
# inpainting
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float32,
)
pipe = pipe
# mask = cv2.imread(mask_save_path)
image_input = np.array(image_input)
h,w = image_input.shape[:2]
image = cv2.resize(image_input,(512,512))
mask = cv2.resize(mask,(512,512)).astype(np.uint8)
print(image.shape,mask.shape)
print("chat_input:",chat_input)
image = pipe(prompt=chat_input, image=image, mask_image=mask).images[0]
image = image.resize((w,h))
# image = Image.fromarray(image, mode='RGB')
return state, state, image
def inference_seg_cap(image_input, point_prompt, language, sentiment, factuality, length, state, click_state, evt:gr.SelectData):
if point_prompt == 'Positive':
coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1]))
else:
coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1]))
controls = {'length': length,
'sentiment': sentiment,
'factuality': factuality,
'language': language}
# click_coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1]))
# chat_input = click_coordinate
prompt = get_prompt(coordinate, click_state)
print('prompt: ', prompt, 'controls: ', controls)
out = model.inference(image_input, prompt, controls)
state = state + [(None, "Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]))]
input_mask = np.array(out['mask'].convert('P'))
image_input = mask_painter(np.array(image_input), input_mask)
origin_image_input = image_input
text = "edit"
image_input = create_bubble_frame(image_input, text, (evt.index[0], evt.index[1]))
yield state, state, click_state, image_input, input_mask
def upload_callback(image_input, state):
state = [] + [('Image size: ' + str(image_input.size), None)]
click_state = [[], [], []]
res = 1024
width, height = image_input.size
ratio = min(1.0 * res / max(width, height), 1.0)
if ratio < 1.0:
image_input = image_input.resize((int(width * ratio), int(height * ratio)))
print('Scaling input image to {}'.format(image_input.size))
model.segmenter.image = None
model.segmenter.image_embedding = None
model.segmenter.set_image(image_input)
return state, image_input, click_state, image_input
with gr.Blocks(
css='''
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 600px}
'''
) as iface:
state = gr.State([])
click_state = gr.State([[],[],[]])
origin_image = gr.State(None)
mask_save_path = gr.State(None)
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1.0):
with gr.Column(visible=True) as modules_not_need_gpt:
image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload")
example_image = gr.Image(type="pil", interactive=False, visible=False)
with gr.Row(scale=1.0):
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
interactive=True)
clear_button_clike = gr.Button(value="Clear Clicks", interactive=True)
clear_button_image = gr.Button(value="Clear Image", interactive=True)
with gr.Column(visible=True) as modules_need_gpt:
with gr.Row(scale=1.0):
language = gr.Dropdown(['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], value="English", label="Language", interactive=True)
sentiment = gr.Radio(
choices=["Positive", "Natural", "Negative"],
value="Natural",
label="Sentiment",
interactive=True,
)
with gr.Row(scale=1.0):
factuality = gr.Radio(
choices=["Factual", "Imagination"],
value="Factual",
label="Factuality",
interactive=True,
)
length = gr.Slider(
minimum=10,
maximum=80,
value=10,
step=1,
interactive=True,
label="Length",
)
with gr.Column(scale=0.5):
# openai_api_key = gr.Textbox(
# placeholder="Input openAI API key and press Enter (Input blank will disable GPT)",
# show_label=False,
# label = "OpenAI API Key",
# lines=1,
# type="password"
# )
# with gr.Column(visible=True) as modules_need_gpt2:
# wiki_output = gr.Textbox(lines=6, label="Wiki")
with gr.Column(visible=True) as modules_not_need_gpt2:
chatbot = gr.Chatbot(label="History",).style(height=450,scale=0.5)
with gr.Column(visible=True) as modules_need_gpt3:
chat_input = gr.Textbox(lines=1, label="Edit Prompt")
with gr.Row():
clear_button_text = gr.Button(value="Clear Text", interactive=True)
submit_button_text = gr.Button(value="Submit", interactive=True, variant="primary")
# openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt,modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2])
clear_button_clike.click(
lambda x: ([[], [], []], x, ""),
[origin_image],
[click_state, image_input],
queue=False,
show_progress=False
)
clear_button_image.click(
lambda: (None, [], [], [[], [], []], "", ""),
[],
[image_input, chatbot, state, click_state, origin_image],
queue=False,
show_progress=False
)
clear_button_text.click(
lambda: ([], [], [[], [], []]),
[],
[chatbot, state, click_state],
queue=False,
show_progress=False
)
image_input.clear(
lambda: (None, [], [], [[], [], []], "", ""),
[],
[image_input, chatbot, state, click_state, origin_image],
queue=False,
show_progress=False
)
def example_callback(x):
model.image_embedding = None
return x
gr.Examples(
examples=examples,
inputs=[example_image],
)
submit_button_text.click(
chat_with_points,
[chat_input, click_state, state, mask_save_path,image_input],
[chatbot, state, image_input]
)
image_input.upload(upload_callback,[image_input, state], [state, origin_image, click_state, image_input])
chat_input.submit(chat_with_points, [chat_input, click_state, state, mask_save_path,image_input], [chatbot, state, image_input])
example_image.change(upload_callback,[example_image, state], [state, origin_image, click_state, image_input])
# select coordinate
image_input.select(inference_seg_cap,
inputs=[
origin_image,
point_prompt,
language,
sentiment,
factuality,
length,
state,
click_state
],
outputs=[chatbot, state, click_state, image_input, mask_save_path],
show_progress=False, queue=True)
iface.queue(concurrency_count=3, api_open=False, max_size=10)
iface.launch(server_name="0.0.0.0", enable_queue=True) |