Spaces:
Build error
Build error
from io import BytesIO | |
import string | |
import gradio as gr | |
import requests | |
from caption_anything import CaptionAnything | |
import torch | |
import json | |
import sys | |
import argparse | |
from caption_anything import parse_augment | |
import os | |
# download sam checkpoint if not downloaded | |
def download_checkpoint(url, folder, filename): | |
os.makedirs(folder, exist_ok=True) | |
filepath = os.path.join(folder, filename) | |
if not os.path.exists(filepath): | |
response = requests.get(url, stream=True) | |
with open(filepath, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
if chunk: | |
f.write(chunk) | |
return filepath | |
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" | |
folder = "segmenter" | |
filename = "sam_vit_h_4b8939.pth" | |
title = """<h1 align="center">Caption-Anything</h1>""" | |
description = """Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. | |
<br> <strong>Code</strong>: GitHub repo: <a href='https://github.com/ttengwang/Caption-Anything' target='_blank'></a> | |
""" | |
examples = [ | |
["test_img/img2.jpg", "[[1000, 700, 1]]"] | |
] | |
args = parse_augment() | |
def get_prompt(chat_input, click_state): | |
points = click_state[0] | |
labels = click_state[1] | |
inputs = json.loads(chat_input) | |
for input in inputs: | |
points.append(input[:2]) | |
labels.append(input[2]) | |
prompt = { | |
"prompt_type":["click"], | |
"input_point":points, | |
"input_label":labels, | |
"multimask_output":"True", | |
} | |
return prompt | |
def inference_seg_cap(image_input, chat_input, language, sentiment, factuality, length, state, click_state): | |
controls = {'length': length, | |
'sentiment': sentiment, | |
'factuality': factuality, | |
'language': language} | |
prompt = get_prompt(chat_input, click_state) | |
print('prompt: ', prompt, 'controls: ', controls) | |
out = model.inference(image_input, prompt, controls) | |
state = state + [(None, "Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]))] | |
for k, v in out['generated_captions'].items(): | |
state = state + [(f'{k}: {v}', None)] | |
click_state[2].append(out['generated_captions']['raw_caption']) | |
image_output_mask = out['mask_save_path'] | |
image_output_crop = out['crop_save_path'] | |
return state, state, click_state, image_output_mask, image_output_crop | |
def upload_callback(image_input, state): | |
state = state + [('Image size: ' + str(image_input.size), None)] | |
return state | |
# get coordinate in format [[x,y,positive/negative]] | |
def get_select_coords(image_input, point_prompt, language, sentiment, factuality, length, state, click_state, evt: gr.SelectData): | |
print("point_prompt: ", point_prompt) | |
if point_prompt == 'Positive Point': | |
coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1])) | |
else: | |
coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1])) | |
return (coordinate,) + inference_seg_cap(image_input, coordinate, language, sentiment, factuality, length, state, click_state) | |
def chat_with_points(chat_input, click_state, state): | |
points, labels, captions = click_state | |
# point_chat_prompt = "I want you act as a chat bot in terms of image. I will give you some points (w, h) in the image and tell you what happed on the point in natural language. Note that (0, 0) refers to the top-left corner of the image, w refers to the width and h refers the height. You should chat with me based on the fact in the image instead of imagination. Now I tell you the points with their visual description:\n{points_with_caps}\n. Now begin chatting! Human: {chat_input}\nAI: " | |
# "The image is of width {width} and height {height}." | |
point_chat_prompt = "a) Revised prompt: I am an AI trained to chat with you about an image based on specific points (w, h) you provide, along with their visual descriptions. Please note that (0, 0) refers to the top-left corner of the image, w refers to the width, and h refers to the height. Here are the points and their descriptions you've given me: {points_with_caps}. Now, let's chat! Human: {chat_input} AI:" | |
prev_visual_context = "" | |
pos_points = [f"{points[i][0]}, {points[i][1]}" for i in range(len(points)) if labels[i] == 1] | |
prev_visual_context = ', '.join(pos_points) + captions[-1] + '\n' | |
chat_prompt = point_chat_prompt.format(**{"points_with_caps": prev_visual_context, "chat_input": chat_input}) | |
response = model.text_refiner.llm(chat_prompt) | |
state = state + [(chat_input, response)] | |
return state, state | |
def init_openai_api_key(api_key): | |
# os.environ['OPENAI_API_KEY'] = api_key | |
global model | |
model = CaptionAnything(args, api_key) | |
css=''' | |
#image_upload{min-height:200px} | |
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 200px} | |
''' | |
with gr.Blocks(css=css) as iface: | |
state = gr.State([]) | |
click_state = gr.State([[],[],[]]) | |
caption_state = gr.State([[]]) | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Column(): | |
openai_api_key = gr.Textbox( | |
placeholder="Input your openAI API key and press Enter", | |
show_label=False, | |
lines=1, | |
type="password", | |
) | |
openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key]) | |
with gr.Row(): | |
with gr.Column(scale=0.7): | |
image_input = gr.Image(type="pil", interactive=True, label="Image", elem_id="image_upload").style(height=260,scale=1.0) | |
with gr.Row(scale=0.7): | |
point_prompt = gr.Radio( | |
choices=["Positive Point", "Negative Point"], | |
value="Positive Point", | |
label="Points", | |
interactive=True, | |
) | |
# with gr.Row(): | |
language = gr.Radio( | |
choices=["English", "Chinese", "French", "Spanish", "Arabic", "Portuguese","Cantonese"], | |
value="English", | |
label="Language", | |
interactive=True, | |
) | |
sentiment = gr.Radio( | |
choices=["Positive", "Natural", "Negative"], | |
value="Natural", | |
label="Sentiment", | |
interactive=True, | |
) | |
factuality = gr.Radio( | |
choices=["Factual", "Imagination"], | |
value="Factual", | |
label="Factuality", | |
interactive=True, | |
) | |
length = gr.Slider( | |
minimum=5, | |
maximum=100, | |
value=10, | |
step=1, | |
interactive=True, | |
label="Length", | |
) | |
with gr.Column(scale=1.5): | |
with gr.Row(): | |
image_output_mask= gr.Image(type="pil", interactive=False, label="Mask").style(height=260,scale=1.0) | |
image_output_crop= gr.Image(type="pil", interactive=False, label="Cropped Image by Mask", show_progress=False).style(height=260,scale=1.0) | |
chatbot = gr.Chatbot(label="Chat Output",).style(height=450,scale=0.5) | |
with gr.Row(): | |
with gr.Column(scale=0.7): | |
prompt_input = gr.Textbox(lines=1, label="Input Prompt (A list of points like : [[100, 200, 1], [200,300,0]])") | |
prompt_input.submit( | |
inference_seg_cap, | |
[ | |
image_input, | |
prompt_input, | |
language, | |
sentiment, | |
factuality, | |
length, | |
state, | |
click_state | |
], | |
[chatbot, state, click_state, image_output_mask, image_output_crop], | |
show_progress=False | |
) | |
image_input.upload( | |
upload_callback, | |
[image_input, state], | |
[chatbot] | |
) | |
with gr.Row(): | |
clear_button = gr.Button(value="Clear Click", interactive=True) | |
clear_button.click( | |
lambda: ("", [[], [], []], None, None), | |
[], | |
[prompt_input, click_state, image_output_mask, image_output_crop], | |
queue=False, | |
show_progress=False | |
) | |
clear_button = gr.Button(value="Clear", interactive=True) | |
clear_button.click( | |
lambda: ("", [], [], [[], [], []], None, None), | |
[], | |
[prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop], | |
queue=False, | |
show_progress=False | |
) | |
submit_button = gr.Button( | |
value="Submit", interactive=True, variant="primary" | |
) | |
submit_button.click( | |
inference_seg_cap, | |
[ | |
image_input, | |
prompt_input, | |
language, | |
sentiment, | |
factuality, | |
length, | |
state, | |
click_state | |
], | |
[chatbot, state, click_state, image_output_mask, image_output_crop], | |
show_progress=False | |
) | |
# select coordinate | |
image_input.select( | |
get_select_coords, | |
inputs=[image_input,point_prompt,language,sentiment,factuality,length,state,click_state], | |
outputs=[prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop], | |
show_progress=False | |
) | |
image_input.change( | |
lambda: ("", [], [[], [], []]), | |
[], | |
[chatbot, state, click_state], | |
queue=False, | |
) | |
with gr.Column(scale=1.5): | |
chat_input = gr.Textbox(lines=1, label="Chat Input") | |
chat_input.submit(chat_with_points, [chat_input, click_state, state], [chatbot, state]) | |
examples = gr.Examples( | |
examples=examples, | |
inputs=[image_input, prompt_input], | |
) | |
iface.queue(concurrency_count=1, api_open=False, max_size=10) | |
iface.launch(server_name="0.0.0.0", enable_queue=True, server_port=args.port, share=args.gradio_share) | |