Spaces:
Sleeping
Sleeping
# Copyright (c) Microsoft | |
# 2022 Chengdong Liang ([email protected]) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gradio as gr | |
import wesep | |
import soundfile | |
import torchaudio | |
import os | |
from scipy.signal import resample | |
input_path = "./audios" | |
output_path = "./extracted" | |
if not os.path.exists(input_path): | |
os.mkdir(input_path) | |
if not os.path.exists(output_path): | |
os.mkdir(output_path) | |
en_model = wesep.load_model("english") | |
def save_to_file(audio,filename,target_sr=16000): | |
audio_path = os.path.join(input_path,filename) | |
soundfile.write(audio_path,audio[1],audio[0]) | |
pcm, sample_rate = torchaudio.load(audio_path) | |
transform = torchaudio.transforms.Resample( | |
orig_freq=audio[0], | |
new_freq=target_sr) | |
pcm = transform(pcm) | |
torchaudio.save(audio_path, pcm, target_sr) | |
return audio_path | |
def speaker_extraction(audio1, audio2, mixture, select_speaker='#1'): | |
if audio1 == None or audio2 == None or mixture == None: | |
print("??") | |
return gr.Warning("The audio file cannot be empty, please upload a valid audio file. 音频文件不能为空,请上传有效的音频文件。") | |
audio_path1 = save_to_file(audio1,"enroll_1.wav",16000) | |
audio_path2 = save_to_file(audio2,"enroll_2.wav",16000) | |
audio_mixture = save_to_file(mixture,"mixture.wav",16000) | |
model = en_model | |
if select_speaker == '#1': | |
select_speaker = audio_path1 | |
elif select_speaker == '#2': | |
select_speaker = audio_path2 | |
speech = model.extract_speech(audio_mixture,select_speaker) | |
audio_speech = output_path + "/speech.wav" | |
soundfile.write(audio_speech,speech[0],16000) | |
return audio_speech | |
inputs = [ | |
gr.Audio( | |
show_download_button = True, | |
label='Enroll Speaker#1', | |
), | |
gr.Audio( | |
show_download_button = True, | |
label='Enroll Speaker#2'), | |
gr.Audio( | |
show_download_button = True, | |
label='Mixture'), | |
gr.Radio(['#1', '#2'], label='Extract Speaker #'), | |
] | |
output = gr.Audio(type="filepath",label="Extract Speaker") | |
# description | |
description = ("<p>WeSep Demo ! Try it with your own voice ! Note: We recommend that the audio length be greater than 5s !</p>") | |
article = ( | |
"<p style='text-align: center'>" | |
"<a href='https://github.com/wenet-e2e/wesep' target='_blank'>Github: Learn more about WeSep</a>" | |
"</p>") | |
examples = [ | |
['examples/enroll_1.wav', 'examples/enroll_2.wav', 'examples/mixture.wav','#1'], | |
['examples/enroll1_zh.wav', 'examples/enroll2_zh.wav', 'examples/mixture_zh.wav','#2'], | |
] | |
interface = gr.Interface( | |
fn=speaker_extraction, | |
inputs=inputs, | |
outputs=output, | |
title="Speaker Extraction in WeSep : 基于 WeSep 的说话人提取", | |
description=description, | |
article=article, | |
examples=examples | |
) | |
interface.launch() | |