File size: 2,639 Bytes
01e655b
 
 
ec6a7d0
374f426
 
 
01e655b
 
 
 
 
ec6a7d0
 
01e655b
ec6a7d0
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b44532e
01e655b
b44532e
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0129fb6
 
 
374f426
 
 
 
 
0129fb6
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
import random
import numpy as np
from modules.utils import rng
import logging

logger = logging.getLogger(__name__)


def deterministic(seed=0):
    random.seed(seed)
    np.random.seed(seed)
    torch_rn = rng.convert_np_to_torch(seed)
    torch.manual_seed(torch_rn)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(torch_rn)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def is_numeric(obj):
    if isinstance(obj, str):
        try:
            float(obj)
            return True
        except ValueError:
            return False
    elif isinstance(obj, (np.integer, np.signedinteger, np.unsignedinteger)):
        return True
    elif isinstance(obj, np.floating):
        return True
    elif isinstance(obj, (int, float)):
        return True
    else:
        return False


class SeedContext:
    def __init__(self, seed):
        assert is_numeric(seed), "Seed must be an number."

        try:
            self.seed = int(np.clip(int(seed), -1, 2**32 - 1, out=None, dtype=np.int64))
        except Exception as e:
            raise ValueError(f"Seed must be an integer, but: {type(seed)}")

        self.seed = seed
        self.state = None

        if isinstance(seed, str) and seed.isdigit():
            self.seed = int(seed)

        if isinstance(self.seed, float):
            self.seed = int(self.seed)

        if self.seed == -1:
            self.seed = random.randint(0, 2**32 - 1)

    def __enter__(self):
        self.state = (torch.get_rng_state(), random.getstate(), np.random.get_state())

        try:
            deterministic(self.seed)
        except Exception as e:
            # raise ValueError(
            #     f"Seed must be an integer, but: <{type(self.seed)}> {self.seed}"
            # )
            logger.warning(
                f"Deterministic field, with: <{type(self.seed)}> {self.seed}"
            )

    def __exit__(self, exc_type, exc_value, traceback):
        torch.set_rng_state(self.state[0])
        random.setstate(self.state[1])
        np.random.set_state(self.state[2])


if __name__ == "__main__":
    print(is_numeric("1234"))  # True
    print(is_numeric("12.34"))  # True
    print(is_numeric("-1234"))  # True
    print(is_numeric("abc123"))  # False
    print(is_numeric(np.int32(10)))  # True
    print(is_numeric(np.float64(10.5)))  # True
    print(is_numeric(10))  # True
    print(is_numeric(10.5))  # True
    print(is_numeric(np.int8(10)))  # True
    print(is_numeric(np.uint64(10)))  # True
    print(is_numeric(np.float16(10.5)))  # True
    print(is_numeric([1, 2, 3]))  # False