File size: 9,366 Bytes
01e655b
02e90e4
01e655b
 
ec6a7d0
01e655b
 
 
 
 
d5b3cd8
ec6a7d0
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec6a7d0
 
01e655b
 
 
 
 
d5b3cd8
 
 
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5b3cd8
01e655b
 
 
 
 
d5b3cd8
 
 
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02e90e4
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from pydub import AudioSegment
from typing import Any, List, Dict, Union
from scipy.io.wavfile import write
import io
from modules.utils import rng
from modules.utils.audio import time_stretch, pitch_shift
from modules import generate_audio
from modules.normalization import text_normalize
import logging
import json
import copy
import numpy as np

from modules.speaker import Speaker

logger = logging.getLogger(__name__)


def audio_data_to_segment(audio_data, sr):
    byte_io = io.BytesIO()
    write(byte_io, rate=sr, data=audio_data)
    byte_io.seek(0)

    return AudioSegment.from_file(byte_io, format="wav")


def combine_audio_segments(audio_segments: list) -> AudioSegment:
    combined_audio = AudioSegment.empty()
    for segment in audio_segments:
        combined_audio += segment
    return combined_audio


def apply_prosody(
    audio_segment: AudioSegment, rate: float, volume: float, pitch: float
) -> AudioSegment:
    if rate != 1:
        audio_segment = time_stretch(audio_segment, rate)

    if volume != 0:
        audio_segment += volume

    if pitch != 0:
        audio_segment = pitch_shift(audio_segment, pitch)

    return audio_segment


def to_number(value, t, default=0):
    try:
        number = t(value)
        return number
    except (ValueError, TypeError) as e:
        return default


class SynthesizeSegments:
    batch_default_spk_seed = rng.np_rng()
    batch_default_infer_seed = rng.np_rng()

    def __init__(self, batch_size: int = 8):
        self.batch_size = batch_size

    def segment_to_generate_params(self, segment: Dict[str, Any]) -> Dict[str, Any]:
        if segment.get("params", None) is not None:
            return segment["params"]

        text = segment.get("text", "")
        is_end = segment.get("is_end", False)

        text = str(text).strip()

        attrs = segment.get("attrs", {})
        spk = attrs.get("spk", "")
        if isinstance(spk, str):
            spk = int(spk)
        seed = to_number(attrs.get("seed", ""), int, -1)
        top_k = to_number(attrs.get("top_k", ""), int, None)
        top_p = to_number(attrs.get("top_p", ""), float, None)
        temp = to_number(attrs.get("temp", ""), float, None)

        prompt1 = attrs.get("prompt1", "")
        prompt2 = attrs.get("prompt2", "")
        prefix = attrs.get("prefix", "")
        disable_normalize = attrs.get("normalize", "") == "False"

        params = {
            "text": text,
            "temperature": temp if temp is not None else 0.3,
            "top_P": top_p if top_p is not None else 0.5,
            "top_K": top_k if top_k is not None else 20,
            "spk": spk if spk else -1,
            "infer_seed": seed if seed else -1,
            "prompt1": prompt1 if prompt1 else "",
            "prompt2": prompt2 if prompt2 else "",
            "prefix": prefix if prefix else "",
        }

        if not disable_normalize:
            params["text"] = text_normalize(text, is_end=is_end)

        # Set default values for spk and infer_seed
        if params["spk"] == -1:
            params["spk"] = self.batch_default_spk_seed
        if params["infer_seed"] == -1:
            params["infer_seed"] = self.batch_default_infer_seed

        return params

    def bucket_segments(
        self, segments: List[Dict[str, Any]]
    ) -> List[List[Dict[str, Any]]]:
        # Create a dictionary to hold buckets
        buckets = {}
        for segment in segments:
            params = self.segment_to_generate_params(segment)

            key_params = copy.copy(params)
            if isinstance(key_params.get("spk"), Speaker):
                key_params["spk"] = str(key_params["spk"].id)
            key = json.dumps(
                {k: v for k, v in key_params.items() if k != "text"}, sort_keys=True
            )
            if key not in buckets:
                buckets[key] = []
            buckets[key].append(segment)

        # Convert dictionary to list of buckets
        bucket_list = list(buckets.values())
        return bucket_list

    def synthesize_segments(self, segments: List[Dict[str, Any]]) -> List[AudioSegment]:
        audio_segments = [None] * len(
            segments
        )  # Create a list with the same length as segments
        buckets = self.bucket_segments(segments)
        logger.debug(f"segments len: {len(segments)}")
        logger.debug(f"bucket pool size: {len(buckets)}")
        for bucket in buckets:
            for i in range(0, len(bucket), self.batch_size):
                batch = bucket[i : i + self.batch_size]
                param_arr = [
                    self.segment_to_generate_params(segment) for segment in batch
                ]
                texts = [params["text"] for params in param_arr]

                params = param_arr[0]  # Use the first segment to get the parameters
                audio_datas = generate_audio.generate_audio_batch(
                    texts=texts,
                    temperature=params["temperature"],
                    top_P=params["top_P"],
                    top_K=params["top_K"],
                    spk=params["spk"],
                    infer_seed=params["infer_seed"],
                    prompt1=params["prompt1"],
                    prompt2=params["prompt2"],
                    prefix=params["prefix"],
                )
                for idx, segment in enumerate(batch):
                    (sr, audio_data) = audio_datas[idx]
                    rate = float(segment.get("rate", "1.0"))
                    volume = float(segment.get("volume", "0"))
                    pitch = float(segment.get("pitch", "0"))

                    audio_segment = audio_data_to_segment(audio_data, sr)
                    audio_segment = apply_prosody(audio_segment, rate, volume, pitch)
                    original_index = segments.index(
                        segment
                    )  # Get the original index of the segment
                    audio_segments[original_index] = (
                        audio_segment  # Place the audio_segment in the correct position
                    )

        return audio_segments


def generate_audio_segment(
    text: str,
    spk: int = -1,
    seed: int = -1,
    top_p: float = 0.5,
    top_k: int = 20,
    temp: float = 0.3,
    prompt1: str = "",
    prompt2: str = "",
    prefix: str = "",
    enable_normalize=True,
    is_end: bool = False,
) -> AudioSegment:
    if enable_normalize:
        text = text_normalize(text, is_end=is_end)

    logger.debug(f"generate segment: {text}")

    sample_rate, audio_data = generate_audio.generate_audio(
        text=text,
        temperature=temp if temp is not None else 0.3,
        top_P=top_p if top_p is not None else 0.5,
        top_K=top_k if top_k is not None else 20,
        spk=spk if spk else -1,
        infer_seed=seed if seed else -1,
        prompt1=prompt1 if prompt1 else "",
        prompt2=prompt2 if prompt2 else "",
        prefix=prefix if prefix else "",
    )

    byte_io = io.BytesIO()
    write(byte_io, sample_rate, audio_data)
    byte_io.seek(0)

    return AudioSegment.from_file(byte_io, format="wav")


def synthesize_segment(segment: Dict[str, Any]) -> Union[AudioSegment, None]:
    if "break" in segment:
        pause_segment = AudioSegment.silent(duration=segment["break"])
        return pause_segment

    attrs = segment.get("attrs", {})
    text = segment.get("text", "")
    is_end = segment.get("is_end", False)

    text = str(text).strip()

    if text == "":
        return None

    spk = attrs.get("spk", "")
    if isinstance(spk, str):
        spk = int(spk)
    seed = to_number(attrs.get("seed", ""), int, -1)
    top_k = to_number(attrs.get("top_k", ""), int, None)
    top_p = to_number(attrs.get("top_p", ""), float, None)
    temp = to_number(attrs.get("temp", ""), float, None)

    prompt1 = attrs.get("prompt1", "")
    prompt2 = attrs.get("prompt2", "")
    prefix = attrs.get("prefix", "")
    disable_normalize = attrs.get("normalize", "") == "False"

    audio_segment = generate_audio_segment(
        text,
        enable_normalize=not disable_normalize,
        spk=spk,
        seed=seed,
        top_k=top_k,
        top_p=top_p,
        temp=temp,
        prompt1=prompt1,
        prompt2=prompt2,
        prefix=prefix,
        is_end=is_end,
    )

    rate = float(attrs.get("rate", "1.0"))
    volume = float(attrs.get("volume", "0"))
    pitch = float(attrs.get("pitch", "0"))

    audio_segment = apply_prosody(audio_segment, rate, volume, pitch)

    return audio_segment


# 示例使用
if __name__ == "__main__":
    ssml_segments = [
        {
            "text": "大🍌,一条大🍌,嘿,你的感觉真的很奇妙  [lbreak]",
            "attrs": {"spk": 2, "temp": 0.1, "seed": 42},
        },
        {
            "text": "大🍉,一个大🍉,嘿,你的感觉真的很奇妙  [lbreak]",
            "attrs": {"spk": 2, "temp": 0.1, "seed": 42},
        },
        {
            "text": "大🍌,一条大🍌,嘿,你的感觉真的很奇妙  [lbreak]",
            "attrs": {"spk": 2, "temp": 0.3, "seed": 42},
        },
    ]

    synthesizer = SynthesizeSegments(batch_size=2)
    audio_segments = synthesizer.synthesize_segments(ssml_segments)
    combined_audio = combine_audio_segments(audio_segments)
    combined_audio.export("output.wav", format="wav")