Spaces:
Running
Running
import logging | |
from dataclasses import dataclass | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import Tensor, nn | |
from torch.nn.utils.parametrizations import weight_norm | |
from ...common import Normalizer | |
logger = logging.getLogger(__name__) | |
class IRMAEOutput: | |
latent: Tensor # latent vector | |
decoded: Tensor | None # decoder output, include extra dim | |
class ResBlock(nn.Sequential): | |
def __init__(self, channels, dilations=[1, 2, 4, 8]): | |
wn = weight_norm | |
super().__init__( | |
nn.GroupNorm(32, channels), | |
nn.GELU(), | |
wn(nn.Conv1d(channels, channels, 3, padding="same", dilation=dilations[0])), | |
nn.GroupNorm(32, channels), | |
nn.GELU(), | |
wn(nn.Conv1d(channels, channels, 3, padding="same", dilation=dilations[1])), | |
nn.GroupNorm(32, channels), | |
nn.GELU(), | |
wn(nn.Conv1d(channels, channels, 3, padding="same", dilation=dilations[2])), | |
nn.GroupNorm(32, channels), | |
nn.GELU(), | |
wn(nn.Conv1d(channels, channels, 3, padding="same", dilation=dilations[3])), | |
) | |
def forward(self, x: Tensor): | |
return x + super().forward(x) | |
class IRMAE(nn.Module): | |
def __init__( | |
self, | |
input_dim, | |
output_dim, | |
latent_dim, | |
hidden_dim=1024, | |
num_irms=4, | |
): | |
""" | |
Args: | |
input_dim: input dimension | |
output_dim: output dimension | |
latent_dim: latent dimension | |
hidden_dim: hidden layer dimension | |
num_irm_matrics: number of implicit rank minimization matrices | |
norm: normalization layer | |
""" | |
self.input_dim = input_dim | |
super().__init__() | |
self.encoder = nn.Sequential( | |
nn.Conv1d(input_dim, hidden_dim, 3, padding="same"), | |
*[ResBlock(hidden_dim) for _ in range(4)], | |
# Try to obtain compact representation (https://proceedings.neurips.cc/paper/2020/file/a9078e8653368c9c291ae2f8b74012e7-Paper.pdf) | |
*[nn.Conv1d(hidden_dim if i == 0 else latent_dim, latent_dim, 1, bias=False) for i in range(num_irms)], | |
nn.Tanh(), | |
) | |
self.decoder = nn.Sequential( | |
nn.Conv1d(latent_dim, hidden_dim, 3, padding="same"), | |
*[ResBlock(hidden_dim) for _ in range(4)], | |
nn.Conv1d(hidden_dim, output_dim, 1), | |
) | |
self.head = nn.Sequential( | |
nn.Conv1d(output_dim, hidden_dim, 3, padding="same"), | |
nn.GELU(), | |
nn.Conv1d(hidden_dim, input_dim, 1), | |
) | |
self.estimator = Normalizer() | |
def encode(self, x): | |
""" | |
Args: | |
x: (b c t) tensor | |
""" | |
z = self.encoder(x) # (b c t) | |
_ = self.estimator(z) # Estimate the glboal mean and std of z | |
self.stats = {} | |
self.stats["z_mean"] = z.mean().item() | |
self.stats["z_std"] = z.std().item() | |
self.stats["z_abs_68"] = z.abs().quantile(0.6827).item() | |
self.stats["z_abs_95"] = z.abs().quantile(0.9545).item() | |
self.stats["z_abs_99"] = z.abs().quantile(0.9973).item() | |
return z | |
def decode(self, z): | |
""" | |
Args: | |
z: (b c t) tensor | |
""" | |
return self.decoder(z) | |
def forward(self, x, skip_decoding=False): | |
""" | |
Args: | |
x: (b c t) tensor | |
skip_decoding: if True, skip the decoding step | |
""" | |
z = self.encode(x) # q(z|x) | |
if skip_decoding: | |
# This speeds up the training in cfm only mode | |
decoded = None | |
else: | |
decoded = self.decode(z) # p(x|z) | |
predicted = self.head(decoded) | |
self.losses = dict(mse=F.mse_loss(predicted, x)) | |
return IRMAEOutput(latent=z, decoded=decoded) | |