Spaces:
Running
Running
""" refer from https://github.com/zceng/LVCNet """ | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn.utils.parametrizations import weight_norm | |
from .amp import AMPBlock | |
class KernelPredictor(torch.nn.Module): | |
"""Kernel predictor for the location-variable convolutions""" | |
def __init__( | |
self, | |
cond_channels, | |
conv_in_channels, | |
conv_out_channels, | |
conv_layers, | |
conv_kernel_size=3, | |
kpnet_hidden_channels=64, | |
kpnet_conv_size=3, | |
kpnet_dropout=0.0, | |
kpnet_nonlinear_activation="LeakyReLU", | |
kpnet_nonlinear_activation_params={"negative_slope": 0.1}, | |
): | |
""" | |
Args: | |
cond_channels (int): number of channel for the conditioning sequence, | |
conv_in_channels (int): number of channel for the input sequence, | |
conv_out_channels (int): number of channel for the output sequence, | |
conv_layers (int): number of layers | |
""" | |
super().__init__() | |
self.conv_in_channels = conv_in_channels | |
self.conv_out_channels = conv_out_channels | |
self.conv_kernel_size = conv_kernel_size | |
self.conv_layers = conv_layers | |
kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers # l_w | |
kpnet_bias_channels = conv_out_channels * conv_layers # l_b | |
self.input_conv = nn.Sequential( | |
weight_norm(nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)), | |
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
) | |
self.residual_convs = nn.ModuleList() | |
padding = (kpnet_conv_size - 1) // 2 | |
for _ in range(3): | |
self.residual_convs.append( | |
nn.Sequential( | |
nn.Dropout(kpnet_dropout), | |
weight_norm( | |
nn.Conv1d( | |
kpnet_hidden_channels, | |
kpnet_hidden_channels, | |
kpnet_conv_size, | |
padding=padding, | |
bias=True, | |
) | |
), | |
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
weight_norm( | |
nn.Conv1d( | |
kpnet_hidden_channels, | |
kpnet_hidden_channels, | |
kpnet_conv_size, | |
padding=padding, | |
bias=True, | |
) | |
), | |
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
) | |
) | |
self.kernel_conv = weight_norm( | |
nn.Conv1d( | |
kpnet_hidden_channels, | |
kpnet_kernel_channels, | |
kpnet_conv_size, | |
padding=padding, | |
bias=True, | |
) | |
) | |
self.bias_conv = weight_norm( | |
nn.Conv1d( | |
kpnet_hidden_channels, | |
kpnet_bias_channels, | |
kpnet_conv_size, | |
padding=padding, | |
bias=True, | |
) | |
) | |
def forward(self, c): | |
""" | |
Args: | |
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) | |
""" | |
batch, _, cond_length = c.shape | |
c = self.input_conv(c) | |
for residual_conv in self.residual_convs: | |
residual_conv.to(c.device) | |
c = c + residual_conv(c) | |
k = self.kernel_conv(c) | |
b = self.bias_conv(c) | |
kernels = k.contiguous().view( | |
batch, | |
self.conv_layers, | |
self.conv_in_channels, | |
self.conv_out_channels, | |
self.conv_kernel_size, | |
cond_length, | |
) | |
bias = b.contiguous().view( | |
batch, | |
self.conv_layers, | |
self.conv_out_channels, | |
cond_length, | |
) | |
return kernels, bias | |
class LVCBlock(torch.nn.Module): | |
"""the location-variable convolutions""" | |
def __init__( | |
self, | |
in_channels, | |
cond_channels, | |
stride, | |
dilations=[1, 3, 9, 27], | |
lReLU_slope=0.2, | |
conv_kernel_size=3, | |
cond_hop_length=256, | |
kpnet_hidden_channels=64, | |
kpnet_conv_size=3, | |
kpnet_dropout=0.0, | |
add_extra_noise=False, | |
downsampling=False, | |
): | |
super().__init__() | |
self.add_extra_noise = add_extra_noise | |
self.cond_hop_length = cond_hop_length | |
self.conv_layers = len(dilations) | |
self.conv_kernel_size = conv_kernel_size | |
self.kernel_predictor = KernelPredictor( | |
cond_channels=cond_channels, | |
conv_in_channels=in_channels, | |
conv_out_channels=2 * in_channels, | |
conv_layers=len(dilations), | |
conv_kernel_size=conv_kernel_size, | |
kpnet_hidden_channels=kpnet_hidden_channels, | |
kpnet_conv_size=kpnet_conv_size, | |
kpnet_dropout=kpnet_dropout, | |
kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope}, | |
) | |
if downsampling: | |
self.convt_pre = nn.Sequential( | |
nn.LeakyReLU(lReLU_slope), | |
weight_norm(nn.Conv1d(in_channels, in_channels, 2 * stride + 1, padding="same")), | |
nn.AvgPool1d(stride, stride), | |
) | |
else: | |
if stride == 1: | |
self.convt_pre = nn.Sequential( | |
nn.LeakyReLU(lReLU_slope), | |
weight_norm(nn.Conv1d(in_channels, in_channels, 1)), | |
) | |
else: | |
self.convt_pre = nn.Sequential( | |
nn.LeakyReLU(lReLU_slope), | |
weight_norm( | |
nn.ConvTranspose1d( | |
in_channels, | |
in_channels, | |
2 * stride, | |
stride=stride, | |
padding=stride // 2 + stride % 2, | |
output_padding=stride % 2, | |
) | |
), | |
) | |
self.amp_block = AMPBlock(in_channels) | |
self.conv_blocks = nn.ModuleList() | |
for d in dilations: | |
self.conv_blocks.append( | |
nn.Sequential( | |
nn.LeakyReLU(lReLU_slope), | |
weight_norm(nn.Conv1d(in_channels, in_channels, conv_kernel_size, dilation=d, padding="same")), | |
nn.LeakyReLU(lReLU_slope), | |
) | |
) | |
def forward(self, x, c): | |
"""forward propagation of the location-variable convolutions. | |
Args: | |
x (Tensor): the input sequence (batch, in_channels, in_length) | |
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) | |
Returns: | |
Tensor: the output sequence (batch, in_channels, in_length) | |
""" | |
_, in_channels, _ = x.shape # (B, c_g, L') | |
x = self.convt_pre(x) # (B, c_g, stride * L') | |
# Add one amp block just after the upsampling | |
x = self.amp_block(x) # (B, c_g, stride * L') | |
kernels, bias = self.kernel_predictor(c) | |
if self.add_extra_noise: | |
# Add extra noise to part of the feature | |
a, b = x.chunk(2, dim=1) | |
b = b + torch.randn_like(b) * 0.1 | |
x = torch.cat([a, b], dim=1) | |
for i, conv in enumerate(self.conv_blocks): | |
output = conv(x) # (B, c_g, stride * L') | |
k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length) | |
b = bias[:, i, :, :] # (B, 2 * c_g, cond_length) | |
output = self.location_variable_convolution( | |
output, k, b, hop_size=self.cond_hop_length | |
) # (B, 2 * c_g, stride * L'): LVC | |
x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh( | |
output[:, in_channels:, :] | |
) # (B, c_g, stride * L'): GAU | |
return x | |
def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256): | |
"""perform location-variable convolution operation on the input sequence (x) using the local convolution kernl. | |
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100. | |
Args: | |
x (Tensor): the input sequence (batch, in_channels, in_length). | |
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length) | |
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length) | |
dilation (int): the dilation of convolution. | |
hop_size (int): the hop_size of the conditioning sequence. | |
Returns: | |
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length). | |
""" | |
batch, _, in_length = x.shape | |
batch, _, out_channels, kernel_size, kernel_length = kernel.shape | |
assert in_length == ( | |
kernel_length * hop_size | |
), f"length of (x, kernel) is not matched, {in_length} != {kernel_length} * {hop_size}" | |
padding = dilation * int((kernel_size - 1) / 2) | |
x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding) | |
x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding) | |
if hop_size < dilation: | |
x = F.pad(x, (0, dilation), "constant", 0) | |
x = x.unfold( | |
3, dilation, dilation | |
) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation) | |
x = x[:, :, :, :, :hop_size] | |
x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation) | |
x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size) | |
o = torch.einsum("bildsk,biokl->bolsd", x, kernel) | |
o = o.to(memory_format=torch.channels_last_3d) | |
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d) | |
o = o + bias | |
o = o.contiguous().view(batch, out_channels, -1) | |
return o | |