File size: 57,185 Bytes
4ad6955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b095443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ad6955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b095443
4ad6955
 
b095443
 
 
 
 
 
 
 
 
 
 
 
 
4ad6955
b095443
 
 
 
 
4ad6955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Marvel Character Probability Model: Gradio Inference Demo"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The objective is simple: Thwart adverserial attacks from DC fans who may want to abuse the wonderful [Marvel Character classifier](https://notebookse.jarvislabs.ai/jY5fsv-S9jKoQQrgd1dsoJuCDt6pTg6ZjBpNK9afxLIGInQv4OlHVuTMHqOPh2LU/) in hopes of having DC characters classified as part of the Marvel universe (the unspoken obession of every DC fan).\n",
    "\n",
    "**Gradio** allows us to create a web application for our ML model that can be used directly or embedded in another application (e.g., Hugging Face Spaces).\n",
    "\n",
    "Two resources were fundamental is helping me figure out how to make this critical model available to the world via Gradio and Hugging Face Spaces.  The are:\n",
    "\n",
    "1. [\"Gradio + HuggingFace Spaces: A Tutorial\"](https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial) by Tanishq Abraham\n",
    "2. [\"Food Image Classifier\"](https://huggingface.co/spaces/suvash/food-101-resnet50) by Suvash\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/wgilliam/miniconda3/envs/fastexamples/lib/python3.9/site-packages/paramiko/transport.py:236: CryptographyDeprecationWarning: Blowfish has been deprecated\n",
      "  \"class\": algorithms.Blowfish,\n"
     ]
    }
   ],
   "source": [
    "from fastai.vision.all import *\n",
    "from fastcore.all import *\n",
    "import gradio as gr\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Setup/Configuration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "data_path = Path(\"../data\")\n",
    "models_path = Path(\"../models\")\n",
    "examples_path = Path(\"./examples\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Utilities"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "def is_marvel(img):\n",
    "    return 1.0 if img.parent.name.lower().startswith(\"marvel\") else 0.0\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 1: Inference"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We start by loading our exported learner from the [training notebook](train.ipynb) via `load_learner`.  \n",
    "\n",
    "`load_learner` returns a `Learner` that knows all about our data transformations and training bits, allowing us to use it for item or batch inference without any additional code."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "inf_learn = load_learner(models_path / \"export.pkl\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll modify our `predict` method here so that it returns the probability of the image being a Marvel character as a string"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [],
   "source": [
    "def predict(img):\n",
    "    pred, _, _ = inf_learn.predict(img)\n",
    "    return f\"{pred[0]*100:.2f}%\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "... and we'll test things to ensure our predictions look good"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Marvel character probability: 41.55%\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIIAAAEACAIAAADwbjnNAABzl0lEQVR4nNT9acxu2ZUehq219nCmd/jmO99bI1kD2WSTNLtbFGV1t6S2WlPLUhI4CaLEkpHABmQERhwYCZIAya/8cAYYQRLHcQIBsa1Yii150NTd6m71RPXAoea56o7f+I5n2MNaKz/e7xaLNNlkTfyKC6gC7kXVi3P2c/bea3jWsxB+DK10dn9/63PPPl5q+MMXbi96+OnH9mbx0gt3/rAZ5aE3y8Ugijmni37SH9bwoh/gfdtTB5MvP/lIO/Lo6e47pympraoGOVEVcu/94O14Ph+gPtB731rcWb5+0Q/8w9iPEwxVXTcT9/PPXs5cnC47MLYbUhhCRiQCAvLOE2EKQ9NU1rudOMyO17/yzoOLfvAfbD9OMHzlJ79w6UoVukVOqQ2wXvUpRYPUDqmuS0KMYRhPxpwzJx5Pxs5TWTSv3z5+4/Y7KfFFP/4fZXTRD/DD2o0GJsu786Pj2ax/+/Zsve6a0g9dBDKF98v5yhI4Y1eLdR+idf7w9HToI0f+3CO7f/3ZW+NP9gdnL/oBfii7dMt89ublWuqzZVi2ad3F01l7sF2NSjMyCb0piur6wdbNg+n94/livUZTispq1XlfDAEWTSneQYwX/R7f1348YNiunwyKx+uwnHXzZTyYlk8/Mf7sY7uPHkyeuLazDOmFB/DsZ5/97DNPhm61PHnnuZfe+f1XTn7zW/fOFgsuyxXJ0ze2ju4cvxP0ol/le9sneqturCrtz33l83lY3b+/9qSfv1V+9np9Y6/e29u5vL+1vbNXjabFaF+rXfVTBNVuHs/eXK5Ov/bCg//3L798tAhFQWNs/Vsnf/dBJxf9Ot/Tfgx2wxe/8Mebpj1cDDtj/5kr5VefLL2HJIKIRTNFX7FiVjQqmDoRVSJ1o8K2P/OZK4T67/2XzychLGq5OnaH3SdzP/wYXNF33rnz2ktvcJJJ6W5MXe3QsDiyjoyxHtCIqMReOWoaIA0gjMZbWxukp65tPXltD0RWra5GE3PZX/TbfG/7pMNw+dLlg600P+vajkmSVVVWUXLWNVVdNqNqNCnrsSIoWhABAFS1iEQms0wb/8zVQoQVUaIZJXPRL/S97ZMOQ1VyYUxZNWdnHaSQU87MRFR5owppGFKOZrQD5BVLQDLOI4BxXnKWIXar5bNXfe2QGUCBP6npjU/63RDaL7jxCwgonIF5HXPAaSu0jGZoM58urhkgQSSraRHaxXrdBnCztm/7tj9b7XvZqfD6dvEHb61qtpx2AQ4v+p2+h33SYbhWnuSkKgDCBvVwtrr3B6t5tKZpmvpw28On9+jZK9NrNx85ePyZ+Vvf/M9/+RuvL8lWVTOebk/9Y3v+2ohu7NXfeGtdOLtdlvP2ol/pe9knHYZAb+cO2j4UjkS4HeLuqHr8Jj3z7K1y7+qwnD/3O//81+4dfznZg0v7aXb2qes7B6kux/Xe9Ufnh6/6vM7J7YxsEgEypm7h9KJf6XvZJ/1uKHOBiKpgCZyja7ujpnDLNfz+myEVB08++anPfvbWeoi+GVEx8d7t7+72YfjW7f6VeysTw3Yp3uhW5UpvifvGfkIzS590GEZajKopM1pD+2NXWXju9iLV17/xwoNF8J2Mpts7B9vl5St7dmt/+/LV/VtP3njqmVcO12+dLF47TkezPCrKyjmQWBc6ssVFv9D3tk/6ofSt/vSr1x59cHrmjWyNm8892oxH5TIc/stf2vvC9MHl7Z0/fHF1sD3aGTk1YJw/2L5SbfH/fHsiq1NKcPnKfh5a7/sbl7emNX7r9flFv9D3tk86DOuYP39jvEeTN+atiB2Pi196eqtnX5XVpKbu9N7y7PjJq82kZLU1OpT+bLL35Gi6zf1VMmz6o9N2eTBx/7O//BSl1T//5ssX/ULf2z7ph1LftdksHj/wE0ddzPeOU058eX883SpB+/msH9X+8o5FX9De0/7gUeJes2BRu3rLoEnreUpxa2zD8eH66O1x/QkN3z7puwEAbBGffWz/m3e6PunJPB6fGuODr61BePvu/I0H6YXb3R8Lb15e/cevvPXg5u70xk5CdspRVqdh3cYwLNfLpz+7ezivbp+9dtFv873txwCGUWNtCUk0ZhE0y7W62WrCrh6Vz79+74U7q9cP+zcfpK98Pn7t9dlnb+zc+NKfgrCGsNacEvkuox9tTa994a6sj9a/AfBJrDr8GMCwXsNioc5hF4SZItNiOTi/RNKnHx1ZA5cm9qe/8JlPP3Lrs5/qJo9+inwJ3Tz16yyamfokO7sHqOHv/O4/6btPZPD2yb8bAODf/68OTzpTlijAyyG2MXUDPzhd3j66/2DJ5JqDS7ee/dxPnAR9u6PlOuX5HRjmsV+kOAwxdTFbTCdHs3/4q7OLfpXvaz8Gu+Esre8cBw9OdZj18WhmKgdngQ9X7bRpnry8V5C5+8Zbtx55oh3aN9569evPv/D5R3eaOAsBlmGIGp9/++xXf2/1h39496Jf5fvaj0H1DQCeurrzzJ5vU7p1aXu/cSnCi0frqzu+tPTFZ58elz713aWDK4yyXh2/fXLScvHzz2yPCj8P/TK0/+Evv/n/+82TEFYX/R7f134MdgMAvDnvn7i6g/1pSjxbw3wdfWEmlVv3aTIZ/emf/wVX1wo+hOHOq1+frf/5G3fOTtpxXfj10N87jr/7/GEI3UW/xB9lPx4wpJCKFFxRrbsUjC4C+wIXbUo5/qNf/Y3nXnzl2sHOpCymPu2M9YkD+xuv4bJP945nd0675985fvuov+g3+AH24wGDcL53tNi7NBkyoMBsyBJzWZQauKotSXe2hH4tUsiwtrNMh2fz1TB+60H/YJH+4E4n+oksQL/HfjxgAIB/ftr9lWceW53NFx13ahtfGGtHtd8u+Gd/6uknvvDFGNLJ6y8C56O3Do3x75zGr718MpluXd7fA/jkXs4b+zFwWDeWYxZy1y/t1qXdGk37yG+cho4xWffWg9mv/epvnSw6OLh+J8hvvb4+WnW//uLZYtBf+plrX35q76Kf/Qfbj81uAICjtvvKFx+7++AsKTPIvIdv3RveWdszXXsTfvml32TVdw7PzhaByIaUHru6/cWb099YLi76wX+w/TjB8Mg4fv7J7XduH/zKH74TGbMqgr9zPDyY3Z+Upbcmi86WK2/AWtqfjP6Vr9wyvjhcFAio8Im+Hn5sYLiKeCu7v/PLr8bI3uDRfI1kVqs1lR4AFosWEQTUWWIDW775c1++fuPK1v/rd+Z/+Ea+vrsTKYm645NPZAn0xyJ8G1XlZ564+rmbj6dh/tsv35svVpZg0XbkrHcODGYWFUVUY03hzMFW87Off+xnvvTMr37r+OXX70keqqKcTmm+yA+OT+8dHj1x/fLzbx3NVp+gw+oTCkNZlreuXi8t9cP6L3/h2bbGftDDo7O7d49Oz9Yhpch5yImsMUSIJMJl4Zyz47p87ObVvcuXotrVbFlY4BxAcd11pqS6LruzxfXtsXL4vXsPXnnlNKZPBHPpkwjD/rR+6snHm2acV4OWOvVWRZZdbId+tR66LoUQWCTlHJgFAEERZTqqt7a26qosmorUFIb2d6c7OxNDtA7xnXtHxgAASs4pDHWVjWue/MwjX3/+7V/9x7+vFx1YfOLuhrouP/PUk1nk1TfeSCqjsjohKr33xlhyo4ZiXCN5MoRoY0iCSobq0pVlUdeN9z4x70zHjz9yrW5KBUAi7MJujIDY9v3+/vW/+Bd/6Zvfeu5r/+x33nr7+Jf+lZ+/8/bilZdfvdi3/mTthp/6qZ/8mZ/+zPZkX9S++cZbv/Lrvzat65IMkWlKN27qk/lyvliJqrOOjGEW7533ZjwZAaKzXhFD5Cu7k89+5ol2SEPfbe1sGV88ODke+jikYFSu33z8Z/7kn7m0d/n1116OZvXqc3f/k//g/3b3aL7sLizv9EnZDU9euXFtb++pZx8fjZqQxVD3rRee8wggWazxxkwm4+VqHWLyZZEie+eLolSDhELksoD3znrfDUPh6GBvogrGkC+Kg6tXo+Qg0vXd5x577M6bbz7//Le+9ge/b8HvTLdtM4rD6gtPP/HEjfzSvbdO5tmvzmxV3V+vhX90J9XFw3Dl6rXJuHns0oFR/e3f/t1qNOq7GAfuc9o/uLRd+bP50hparLt+iM7bCg3bbIiKqtje3Zotl9Z7VfHeWm/zmseNu3z1MgCE9Wq8vZsVFNR60tkwMfiLf+EX937393/tn/6GQe27hUtLckankyGe3bh6+cpjO/b2axK7vccv3b93ulrHfv2jKNj9qGGYNu7WI/uk3mi1NSqgwJ3rn+qXp8vZcc6ytb0/3iolye27J3/xF//c3/gf//W/9X/5d//hL//uqLI5xbJ0o6qqymq1Xu1Mp8shobNgDRJacmjtfLkw1jhnRWS5WoSsDeF4Og1xuH/v3nyx+OVf/a0vhvC5zz91/eYjv/2bv/7g7oO6qaumkqzOQM552Q7vYBUpY4BLe9tPP7n/zRdfmJ2s4WOO/n5EdwM53N2uv/j0wRNXr5d7W+t5Opvltl20IQag2Pe70ylam1KenZ2RLf/a3/jXPv8TN3/tV371d3/jD965c6+oR//mv/E/+Tv/0f/T+FHOuQ28NaktmWxsHwMwC+sQgnI+uLQ3bqpPP/Vk161DypnZevril3/q5edefOnlFyej8ex0MS6LT3/6ma3LN7/53O8t57OmadpuuHqwu5yvfu8bzw1Drmo/my2B1Rtpysn9dP/wnVm3ZuGPq2XrR7Qbbj2y82f/1Bcw6KLF158/Wiy7dd+LKCAyC4Iu8mJrd1tZL1++/q/+a/9q3y//d//r/20IsJivmPPf+Nf/rZ/9c3/u7/9n//EfvvSGKv3L/52/+sbzf/j2ncPtnWnR+J/88k+n1L70/Cu+8GjIlu6Zz/3E7/zmb7/19p0s8uDu4f72/pe+8OU7t++tV8vr1y/P1923Xntxeu/upetXlvP5crn6zGefvXXtyq/82m9tT7f3n5g6b+LQL+arddeeHJ4dlPX2Lb9c9G/cmeWPB4kfBQyXdm4+tj1d3IsPTrujs3lIsR0SIdTeV1VdFYQgfduXQ3/lysHu5av/xd/9/778yuvXbl1xq25+uvy5P/9X/vi/+Mf/V//Ov/nq2/cu7+/5avpzP/dVl+cn83XMOS7SYhG395quX6VcMcvZiVZ19eijt1556SXrq8sHO//kH/96jPInf+HP/OO///feePPedHva1KMM8urLr2TVBw+ORZ4jUOX02OM3rEFyMG0ui/DRySkCDl0f+/7KXtVKvnv7Y4m9P3YYrlyd/uRT1zXF12+fPJitlEUQKu8q75z3McbVOhAaAJ4CLherB4fP+dJNd6bL5Sq07a3HHv3zf/ZP/u//N//WS6+8UDbl7Gz+C3/lFyoP3/rmi9dvXh6Px5V1k/G4KPHg0uXVqh2Nqz7E45PZZz7z7G/9+m+HzM32zuVL5tWXX8yuvHrzsdt3f5Mc7ezslqUrCh+GYK7ad27fEZFrV69UtUciZQEyR8dnkuGJR2+8deedGDMaurU9nh21Xcgf+Sp9vPWG/Wn9uccva1o9mC1n60CIuzvTW9cuXd7bbZoGQZuqvLS3N2rKqihKawtbqoI3bns6uXKwX9XjP/bHv/y3/+P/aD4/uXnrkXEznkwnf+ZP/6n/4j/9+0PSyXh85dpVRW2XC2dc33fWF+Tc7v72f/63/w4Zu723lzkdHh4uVv3OwcH67PDS/sHjjz326ScfL7xFgKZpxqPJqKlvXr9cVtWly5fKqnLOjSeTnb29uqpn8+Vy2Y/r6WO3LpfeO9fcurX1cVynH+NuGNH2lb26C3L/ZJaAmqLY2douC98NQ2lsZN7dmU7GYwswnozv3T8cuuF0dsagnEsAc3JyVlblW7df807Ho/FisbKGPvWZTy/np8+/8sa161d2drcLb0MIs3g06RrvC1HUHFfLAQz8+q/8xnR7+/DksIhF23ZHD44uHWy9+tK3DEFOAZGGmEZl4y1d2t+2AFRaY43HYr1aGbIh5qvXru/u7Lz5xusci+tXpm+RHh7NL+HocNqdLT7iQO/jgsGCvXK5Zk1v35uDcZNJsz0ZGSQA2NmaoMKtxx9t18srlw+uHOySMUcnZ7P1DJVHdU3AmFPVjJ0zy9NlUXoy9ur1K4nlxq393/mNf7h/aatdrjkzqipr7ELuQ9MUCBaRnDWL9XIIw/bu5f3tB+7qlZz47PTk5Gw1GY+9JYvGWNOuuzatlODK5HI5LnMUES6cPx3C6dnyiSeeTEPc3d9TTm++8dbZsn/iiUdU3zw+ksdvHcy++fZHW8D4uA6lZ2/s37hUkvEZTTOqS+dyStbi9vZ4e2s8mVQxxGeeeWZrXO4e7P/eHzz3+ttvD2lAS64waIwt63Hl66omsqBmPJ0Y50pfHN07ylkP9vbGk5FyFs5KftLUachADtEQofVuPBr1qeuGpQJwypb06v7+dDQe+t4Xnqz1zh/sbxtnOPG665uyziFai8PQjsY7N2/e+vSnHv/000+o8O72zpNP3uzWw6Ltr+xvOUOT0m5f+YjbVT6W3TDZGl1/bHR02neMZeG9sUPX+em4qksEMcZ6C5PpaGtreu/Nw7/39//J4YMTZxwzl1VFZMajkYDmnEvvS1+Q9X03+MISGFs0BggEjfNnpwsWJLJawbJb725tnZ3NY87rsw5UiKFd9VmUU7SCA4hzbmt7SgjWUN14Z1xd1qdni8VsgYZOZ/Py3mFdNQcHe098+nFny71mtLt38MYr3xzC8PiTN197+dXHrh1c25u8dbu9OpquPKX4kR1NH8tu+Omf/OyoGp8uQtv3qgqovnBVWaBijtlgnozrOKydxW+98ObdO3cV2Bp3cLDfeEcEWVhYnXXCSECFL+pRUxYTMbZv+xgHBpDEgq6uRtdv7l2/dmlne3x4ctqGQRU169Zo0sc4Pztr6sY5M6QEiMBija3qerZYHs3mq74X66qmbkY1AaQU798/IkPOY91UvvTWu3q8denKI2VZlkVx+dKVN955cLC/b4wbGXtjlz7CtfvoYXDO1NoeHi9CUgRExL7vCu+HYRj6LqeUhshDjoF/5zd/K6U0HjWjpipLVxXeVRVaLyqi0TmHxtjSRGaE5B2OKm+AhzyEITpnptO6adx4MiGFu++8c/f2/RRluVgaoyw5pjDZ2aprH4bsywJJjXd15QAQjawWq8V8dXx8VI8aRKjH1e7BTlW66WQ8Hm+xMJKQMYg83ZoW3hv0k0ldFVVS2Z2OrUJp3Ojgyke1aB/9ofTFa9cVuBs4SUYyBjDG1FSubfsYjVBeLQUAFfTN24coQM4a6ySmdd8xi/cFe1MYz8LOoDJVY1sXNYB6U0oCZ03WSFWzXC6v3ThIQ4wpL7ohDnE9Xxsn43FjC3d5fGVrMmr7lgiIICUQJwawLIpYTVR7tCbF4fTsxHvfjEaclWMsvbt+85qIEAAAhxBUZGtn68G9B6tlNx2XBjK4ukusCpUzy49o0T5qGBC9taez1cmyd9bFzCIMamKfSTH2nTrf9UPXx2XbL7vemcIXMgwByDhlAirGzpdlM9pyllKMvnKOwCr0mVVkPK3HdXPv6EFRVNfqioN4b2PWEEOUKP3ykUvXx9Ot/Z2tpnQhxb7v16uV8xWicmRLZnfHhRC3t6bCyVGjAKcnZ+PxaGu6dfTgwfPPPf/UZ36CjOaU2uWccxIWY4r5bM4xOGMXsyVyKI2N2OfFR6bi9xHD8OS0hAmv2tAO0Ze1U045j5tqtm5LZ2JMPktM8XS+jjkjENOQOClo3dSQYdSUzhlrDKLJeaib6TB0oJoze1eocuawHtL1q5defe3tp5994vad+7s7O0Syv7O9OJ2PJw2qcAxt3y2WaTlfWGfLqjEIAFq5IoR4fDwrq8YA7O8dqOacQo5hdnq6NR0hpBz6t1596bGnH08RNOcUIgC88K3nvYUobtWu131glklTzrp5WVpYfTQR9UcJA5G5tjcC0WWbVI23hmwRmQEk50yu7IdhsUpZOAmoYl3XIJpictYUxluHZWGNQUBMKRIx52zQAhQxBGeZs4YwTCZb9x/MrHdnJ6u6qBazxXg6GY/Gt25dUxFLtl12J8ezpi69td16GI3qqvDMiCCNL6w1hTfTaWNIy2pksC7L8sHh0WrdGmu2JpP7d955/Mkn1mf31+seBI5P5ym0V69dfuPVO8vVetrUs35Y9rHyvv/o6kIf5RX96LXd6bUb635YtokQc4pmc80lTZn7mNquX/dx3cahDwgaQxhi5MyF984bRARFYxySs9Y4WwJoWVgFqWtvfQXGIuDh4T0ANWQXi/loNLn16M3RaDzZ2nO+FHCiRlEm0/F4a3ux7Eaj8c7OngGq6sJX1lmajKrxqByPmsl05Lx13u/uTcvCGSRmMWRefO7V5ewBke1X3dG9+8eHD0aj6vDwuOsWqU+Hx4t5OxBhyCmljyy59JHthqsT+5XH/IN+OF6GLEjChhwqeOO7vkOkVrhPKWeJmQmgqmph9kUJhEiUUiZCAB2GzrkyhWAKi7Y0SNYXzmBV2NKZlEzXtd6pIR9jh0YRtSgMS1jM54hAqM6IEXGgZVkc7O+UhbWT3b5P1tSo2XszGo+Luip9OYQeVZ2x3leO0vxEBcU7euf1t69cv+Y8zmbzuF6dhbxer4uyQINGiRRYRMFJ/oTBsD2yX332Uqeje2fzZR9HTSOi1vuYkzU2ZSkcxpDCkJiZVYu6EmFVEWEELRzllIx1IoBIhKrCCpYMEkFZGgtIYETSqGqqm9UwdDny3t7+0Pc7O5Nh4BQzcyags5OTRx97xIApC/+pTz/e1M4QIlFd15YsZ64aj8aUvvKFE8ip7/sujZtiebquS8PCq7a//faD0ahazFfHp8sU25wX49H47GRxNls3pV32QxZFRZGP7FD6CGDYGfkvP74lprh72h7OW+MKY+yocKoIaEVERZkls2ZWEXDeWmtzysYQKKsQs4KyMSaFOG5KkGSMARVLYAGUoaitMgCAJSyL+srl/ddff/vSwZWzxVxVrFEVTjHnlCbTERAeHOxdu3rJGBIRY0yK0VrTVD5nrptaEJ11AICsxvl+uZCcH9w/KUq3XLbOmVffeltFFsvFyaxFELLYHp2Erk+cZstBRACAEBE+shLQh4VhuuN/5tP7NZb3Z+H2LGSF0jtDpm4a4aSqLILY56zDkFgEEQBAVXNOqs47EpSu7721iDlg6NoOVL0l61waoq9Kh8jMlbcKtqqLZrI12Wqa0bjt+OqVg9//vd+/eeu6IbduW86yvT0tvb/16M2mKkAARACBnUfQ0agRVecLckZzFhERUVVCQE1VZdOQVBgEj47njuy6G2IIKQlZdc6vl/0Qemc9oEEiJAPkPqou6w8Fw/42/vwXsW/l9my4N+/6pM5Yi7i3s114N6q2CkdtHw72d5bL5Xy5WtzpEDBlqQCzSOLoC6/AChiYVZNB6IdkyYpF74O3BSsP/dqbWpWdM4V3o6YCxYODgwdH86Yp1qvVN77+QlGMc8pVVcaQtrfGO1vbRCQiKJxT76yvqxpQs2QB8IjofD+0RVXFMEhOObMICGi77pbLbrZsU0wiCmSEeXtr3K67RdshoCMBBGNMVszykZUePjgMu1v2T/10BdnfO8OTNiZAQogxXL1yyXvc2xlPRuMb13fnZ6vFcj0uHZApTxdd2wtrZhFRABUR591qtSrLUiAjiiGDAFVVxpiGobUWxpMxGQRVaywAxDBsj/fr8Xj+2jvGbj399FO/8su/HuI9QjLGOEeg6H1hDA3DAADeF9YWZIwCO3IikEJARFSrmmMMMaV+uZqfLnvOq/XQh5ByOpn13vuY0ripV6sWUA2qsABYBYNIaKioLK7hI+FdfnAYPvdsKWn3nfth1cfMkrP0QzjY33WGtieTy1cO9nem21vjdrk6OT1TxXXbMWcAFIUhBARQ1bbvp3acUi68ZIV123PWPoZtFEIkg6UvYoyF984AkSUi57z1hapORs2LLz5/7fKlpmn6uHDex5ARcXtn6rwDYUIVRGMM54DkUwyF9yAMhKqQ4sA55T6sZqvDw9MhhNm6b/thSLntwjDEuhYCjDmLgiUiMs7asixZRHNOrEVREa2YPwKprA8CQ+PNzeu7Jo3vrXMXkAFD4iGkqiy9daAynY4uXdq/euXS7PS0Czxbd1VZrvruXDYeIaVsDIIisqxWK0Bw1nrvc0ysULJ1ZvNR27KItjfeFQ6JRTiDiIZhQLSTaT2dbq+7zhZ+veq2t5sUUQSIiNAMsc8xIcIQozFO2y4Jc8zWGV94UE1hWC9Xs9np0dHJ7ftnLPn4dJGyLLq+j2nddvt7uylHQ7Q1bhAxxZAiTyc153wSgiLWTUP25GJgcNb+9I1tHpezRUCiLBAFsoiztiicihwc7F67fn1ra3J4fNivh9ffvlvXZd/H1apDRQAFUFEwQBuXAxGJsOt7IlJVDgGErbHCc4tQGDJEZcnJxGEY0NmiLBDROgqz/s037uzsTmMUY5DQGpOayWSx6pbLs9J7VxTW2nYZi7Ichh6EnXc552HoVSEO/Xq5PDo8vnP3aD5fhCTDkFdD3w2p7drJpN7dGW3vb33+6WdSGl599a2j49PaFVVVphTbkLZHFUB6an/yrTsfQevK+4PBI3768k5flzHmLiRXFIMogwEkY4019srl/cceuwnAt99+R9QMoRNmRHt0fMaJATfnKAFAzowIIsIMqgRAq7atqwaUhxCsdSmTKwaar7IqIoVYZCBw2HZ9ATBbLO8/OFutlqNJubMzvX/vfsjZG9uu1q+/drup60sH+5Z0NJmWdR1TSmHIKQ1Dn1MmFGVezRfHR8cnhydHp0tQ7Pq4Wq+XQ4hZOPP+3t7VqwdPfOrml//YTwEYwF9brztJvL27deed+1uTghgWi6WEj6Y94v3B8Mh+DVbaITZVudQYYw4sfTeMmialdPPG5StXDu68c7dpiu3pLhLcPzzpMx8fH53MZqpCREQooojYVMVytVZUEGBRVTWGUk51VQ1DF2L01oaYVhjUoHUmcQVoBbTv32y7ft3lpGScUU1FYYrKi2iS5LxfLRdf//oLly5d2tupnbk3qkpEZREDoCI5DCzAnGZnZ6ez5dG8JZAHZ4uTxboLAwj1IRrnJ01d1nU9ngrCqB6PxxNyrlv3ypRyvnH58unZYrFuq7I2uGb9sAHEDwsDIX7q6t50ZBNLzKmPNiuwUkypqhtflGXhnIGjB/dKX022xmrwueeef+Ode203pBRzFmOsdYAARVFOR5PFcmmtSVlUEQBEtSnKvh8MGQSMMSLiat0qAKBa6/s+Dkm6GBXR2Mq7wiK7sujW6fbdo+nW1vHRWTOtq6qZzc7Wq7Ou7w8Pm+mkItG6rpraDV1rAGIcACjFNPT9/eP5W3eOFqv1ct31ISpojCmzTEqfVVZdu5jPj47ux3Fcd4Nzdjyq7x8dj0bNzs5kvlh4Z03pSkdt/FHBcGXHbo19ELXOFq44XXUJyBHVZems9c46pG7djcfNeGe8bMPv/t5vnh7P234QVQBFBOetCBtrWXPiMN5q2Gi/7sKQAZEZ+n6wzq5Wq6YZpThk5hBtG+Ko8H2IRHiQ8mK12trecU6glrqpEXC9Xl65srdarPJW07XDfLEia6tRMfQiwn2Iaej7GO/cWTmLw7pLOQ0hr9uORR4cnc1Wa1bphyAKIaack/OODGWWMKR21R7eP9Vk16tVU9dU+KOTk8dvXM1ZCu/rqlpmNcYCfNjk0g8Fw2cbqrcnWTXlzOCqumzArLpojTXO5JRUeLQ1uXHzsrfm5dfeuXPnMHFSo8aS5qQAvihCjHVdGWOtNcbZwrvdra05gGoXIyNqyskXHghTzq4our4HQCLTdkGRyGLZlpPxCABYAtlSWAsLj9y6vpzPzo7Pdna3r133R0dnBC4OsfB1zIOsA4LkFHLMIUjf9ZxlCEM3DOsunC1Xxpiuj0kEFERBkcgQEYUh5BiHkO7eubu9vVc4GjWlQer6frlqm6Zy3llLhuDGjWvPv/Jhx2n9YBgKh/VBo0Rn6w6NJwBH9tr1vbfeuR9CyIJ7e9vXr10yCF0//PMXXz85PiuKQoBVoSh8UfiYs4jmnHPKdVXXVaWIw9DlzN77umHmTkWBsOs774sYozWlJSMizBmtG2K0YtbrtXd2sZiNx2NNMNoe7e3tA5qTs/n29iQLPPLYpx99wj249/r8bB36QUXWYRDhsixjDAYAQYehU0BRWK7X1vsYAucEqtY6VuDEiKSizrn1unO+aNfdcnlaTyb9MPiyKmbzk9OzqrSGjHfGkQ5np/ihefc/AAYCuDm24quzZR+EQIVAV3ePhhD3d3cMYd1Uqtp1YTFf3Lt3DICjplktl2StscYYAsTKmMyZsx+GuLdjd3e2jDVtVzjyZ/N5N8THbt2IMd25f0SEiJt09+C9UxFhiTx4KEElxLBarRXEGUvbuVufvjY/Hk32AIyA7OzutwOT8qOPPbremb3x2u2ua0MMwlmEh76vy3I+WyvAEIf5qo2JwZCIFL7wqkiUhSGBqoowgKpot17lpMeHs52dCbMSQlV7OcbZfD2uK18U6FxpPoL06A/4iem4qkZ2uU7s6mnTHJ/NHLEv/GK+zEnK0r391tsiWTUTWUJjjE2K5KwIaBYWQSAiquu6KCrmXI9G3nnnCKScLVYsfPVg9/r1S88//3pV+hhjGEJVF3VZOWf6fkg5H+zvGLJISGicd+NRZR3O5/P1nXZ/b3d/Z3s5n99+537XDvuXelA6OezOTuZF4ZHUO1LyJ2fzlNNi0VpDRCal7Kydbk27YbBkM2fOnFLOKSGgqqpCCHFna3J6PLt09drp6Xzc1DGGMU2d81eu7MxmS2fBW2eJ1JuPdzeMS391dxQ1rVLKCcgYQBQVQKugi9Xi+CQSgCqrakoDsyCg9UVZliFGVY2RmXl3e9tb22yNqrpUYTLqC2etGYaYYnrqmcffefs+EFpnyVBKWUSEM3rHIpk5xry7u5XiYL1XwDAAGkmx9W505/ZRZBHl+WJ5dro6PJo1dXHt2tW6GZdVAcq721gX/lYMzXjSdX27WIYh3Lt/1CfuQ7LG9P2wyS3KIJvLARRVNQzBegopF4U7OT45PLonCMI5pYxkXeHR+qZRMoasqUfVev2hJJu+LwwIeLBXIaYYJWRtu3UIsaxrSzanFHMuy0oVhFlYuz6oAigxc8whM0+nW2dnp9evXfHeOeeZ83K+rMtib2/HIiBJsz0WkenW2JBpQyhK36575woAaeraex9jVgDvfNsNTz9z6eWXXxpbS4xdvxYQb+3OXgOk77z51mg8JUFFlZyb5mB7Z98YAM6OiDmr5HrUqKgf108/+UjXdkVZvvrG223LYYgiSkjCKaVkyCZOopw5h5RAQJgXqyUgtG2sqgLJFGU1DAMAJkBflrNVZ6y5tHdpvX7rY4HBWrKIKUlIkjMX3m18g6qqYhjKsghhUADrLWZESKyMAICoCACwmM/GdXOwv3t0PBtCuzUdPfb49a3J9FOffmp7d7frFjG0o7oeTXde/OYLEvJy0VlvOSdrXFlUKceY4qb4o6Bvvf0Gog5DL9akZJAIxYcge3v7qjCfL9HagnA0Hl2+fDnE5Kyx5JA0h0xIOeUQwu72lih0XTw9PUsxDzGsurYuSwBIMRqLAqQJWFGZU86zxXp/d2to+93d3WHo67JcrZdkTAgJCM/O5iEMxnsYQl4cfxgM/igYnIWkPAy87CIDVpVHxMKVdVGM6wIJu9adns3B0MGlA8Kzo6MTaw2AgmhOCQDH08mLL78OhONRk7M4665dO9jfr6Zb5WOP3iq96cPiN3/j90bT6b/+N//q4b1Xfu/3vyEZXnrlDVcUfehiis4VSCQqq7Y3BoGFwABwZmQj1hky+NgTj7zwrRdSIhHe3d0ajb1zhSoMXTjrBke264eyNL4sF4vlbLa4e+/+YtkqgPcOEdthQADOYoxNnAgFQURNSqnvutGNK23fd11flD6k2A+hbkbGQgm2jWnoo4o6VzSjEmYfqmH0+8LgE42oWcE8Z0CLgAgAhrCqfFE6UW1Go3XbhpxiiH3XIaKIgAKAApiqrpbLVdd3TVMRUlWV43H98qtvPvf8a13X/tRPffHK1Uve0De/8cJ/76/99f/RX/8f/gf/9//jP/pHv3HtymVjDBGSsaoaY2iaJoSQMwsjOqsECowgiNYYqkt3eX/39nh8cjrzhW1GI2dtXRWTyTSF4ezsNCYNnELMw5BC14Yunp3Mc5bMOefsfdEOXQoRiQCAEFSURFU1Zx5iXq7WtnCKQgBhSFXdABhf1quzeVG6qvIK4iwYMx3N03r1wTl83xeGlfKq74UBEY0lZq7K0jmq6qooXYxhOtlaLlZ37j2YL+b9EBFhk5ZABFVFNG3bEprQxwfrE+vs/v7uL/75v7S7t/XNb37j5W+9ePvt2+Npvb0z/me/+Zs//6e+0q+765f37z24H1MXzgY0CADMnHK2xiorWWLOIQGShhjrwnvD43FJCHVdFt4ZQ0PfxxgLV3SrtTO6Paq7IXKkVuRstoz90K6HmBhQkQxtqsmZp5PJEELXD0ZBFUQBGVS0H2Lbh4PRaL1al0VlDEpOzpH3vhnXy8Vq1FRXDnbeuX3//tkyxfCBMYA/gqckIqd9m5MQAQiAqjE4GtdF6Uaj2nuPBJPpqGlqzvJuynrzbyTsurWoqGhZlp/77BOPXj/40hef/Ut/+Rd/4c/+4l/7a/8DV/pf/adfe+uNO9euX3rlpef+5t/8t+/eP0k5v/r6bW99ypmInHPGUEpRQclgTDHnHOKQYgQEZs5ZQ0gxcT2qq8pttmPfx7brl6tF3w/LZTcMwRiI3WARESmlAYiYswirYs6JmUfjmoiYuY1BAURBFZg5xdh3AyESUU7RFj7FKJKJUEDbrt3d37n1yM3EOcc8mXwoKbk/ymE1hDkrInHO1lJOTERNXTnnODER1nVVVyUKApqh72KIRGStEVFmKQpXl9VX/8SX7t2+/+Deye/+1h/Uo//Pk08+eny0unP3tBnXs8X68Ojk0sH0W88/Pzt7MPTh0sG+dxZwaQ3mZEVBmAEghMEXRYzRkCFvhFVQQojHp0s0JaEaZ5E0dCnUqe9n46bqu2CJYowIul51ZCSGCGqYE2fNSdZtJ6JFWZyczlJMqpB1c6SqQGLxMaauDzEO1bgJiUdAmfNiMbty5TLnioybbu2NxuViPRBZWzcfDwwILEooLIiIiCalFIYwDAFQjbUxBOeoLMuu7Ya+B0BAFObxzk7ftgMPVVmOJ5PXXrv9+Z/8wv17b1V1dff2O975F1+5/+D+XQJlAaTy8cef2D24cXpy/2tf+2ZVls5aSzSdTgEpLZacNaaoIgqAQClFY8qUcs6yWC0R6MyetauVQTw+nXlX1OMK0axWMm5GbbdC5NnZqihpvUrOW1MQZ0kss8V6k+nClPj85N0E8AAqAKSqmfNitV4sO1t4Y0ERjXOL5XKISRkKD9NpuZjPUNE5u3jwzscCgyqsu1x7QtCisEVhCWC5XDR1JdrUo7pbd5u+ydHWODIPfUwxiUKK0XkbI7RtW1bVfJH/wT/4h1vb452t6dl8/twLrxXV9ld/9k/GkLa2tksPe/s7aMzf+lv/0Y1rV6uyOD09Y4AuHE8m46apl7xSUQCIIVrnVJmsMQTM2rcBZUXGxhTRUFkVIhpDMkYl9CiREw9913fJlcZaFSQWXi5W666v6gIUEvOGnAaEZBAfxsJEhACgMoSwXLZl5Xcv7fchNKNxu16fnpwc7O1noaPDB6OmeOLRqy+8+taksEP/wQlkf9ShJAIpQeFFUsLCFVWVE5+ezcgY5xwScmbn0CfbVPV8tlBVIhqGUNUVkhXV+XzejJrRaFQX9aWD7ccfv3l4dPrbv/N1b4uskmIE1Z/8/GceeeTylUv70+lIWJqmnm6NzuaLoeutcYTUx64oCmbZMFwr5w0ZAEUU64hF+iHGyFXpESCEHgE8kYqiKigp5MxSFtXxyeL+4ZkCTre3QGXYJFYBREVV8aFwhYhOCKMBRBTO89V6vDUehi5LDn23vbNzfHR8+86dYYhl2Vy7fmW1GF594/ZoVJ+tuvhxwAAAScWhIcZhGJz31trVurN2LsJFUUCB43HdrrvxuJ5sjeenCwBIKbrkJltb3XqVU+w7Ncbs7mzt7+8r0nPPvTYejfd3t3b3p2VZCEtRFqPR6Jf+0s+98/bh0fFpSFFFcozjyXQYzl3JnNl5h4p1VYUYtre3rTW2KAHJWsOZV8u1sHClRVkQGWOZ1DprWEUB62bUd+H+4fGoKaz1IhBCIIMcWESEecMb04e0o5izt1ZUVbXvh/nZoizdjcf205DW69XW9tZiNptMqsceu+W929vfbqpqsY6SN87MxwCDCGhEYzEH7bu+aSpnXBjyEtq6ERWtRnXZ1MK8v7PdrjoRQaFh6I01zWjUd22MabVenZ75+/cPv/HNRd+Hpi5c4UdNs7+/fenSpUuXLyHQgwcPLFkkWK3anHPKvFqtC++tMdZ5zknFGAtFUcQwWEu+sM4XRTUyzpGxnLKx1jjrq8Iock6V9VXpYj9MRqOyKLo2bJjFIcSuS4QG4LwcK5ucKm/cPQCANmk5QmaQLDGG1bptltX85PTS5asr4ft3j4rCbU9GfdSYh6pp9i7tols/OMHF+oOh8EMQ6zvmIEoAQxdXqy7E0LZt3w9d361WK05pOhlZS9tbk8lkLMLOERkchiFnnk6mO9tb+zvbxtpXX7t9dHISU46R27Zv257IVHW9XoeczbOf/SKa8vadQ1Y11jprY4wxBrM5pgFEREFzykRUFM4iVd5VpbfWjcYTRCRrQGnUjJzzW1uTUV0UzhdFUTfeWlThsiystdZZY8hYyjmpiqrklEQF9Nudzll1se5FRBE5534Yluu27/rFYua8z8yz2VkzmQrIYhEWrRRFEXoajdwHFuT5wblyVU2ZbYkExCENoMZYRLXWpJDJrLZ3Jk1ZqeLNm9fm82WMbJ2xxpWFqyo/3do3BE1d7G5PM+vpbHHv3vF63c/OlsejUwW9cf3JG4/sjqejJ568+cu//Gvv3L73x7/6ldWqT3nVDYMx5jyLLIqABhSI+m6Y7O+Xhd3ZmRRFoSAKtFwut65PlPPu9lbhYNIUYYhI29biul33MYwmNQKAgve2G/ohZWbp+05ECJC/cwljhqpCZVEgTnm1XN+5fT/E3HehW7eXD3ad9ccna2EmAkPU9zqZ2HtHH5DE90OVLJKIMjbOIiNFkVIyc9d1ZVUtZnND6L0HhLo0zzzz+ND3e3u7k1ETh7BeD0Vhn3rm6b4fhIeD/V1+7Z3F2frK/s5kWi9XLSA99SkZwrrRybVr17e3J/mVuLW1fePWzddfe21YrjhnzswsCuLVFUXRDb2qpBSYGxUlMnvbW9PtySjXVVUYYwTFlpWSNx6GxZnLuFyuOQNaHgZhkZzSxvkOKRljjTGZRbO8t2ggIt0wTMY1AiEoKjjy3TqczeaOyBcVWnt2dmqsG49KNNY4G06cEcwfqPTww1aOcoSYpDBebaTIgpCJuhCcMW3fi0gzqgjNp564aa05enDS9e3QDk1V+bq0RfGpR25+7be+9vprf/Do44+WdWFKd+XGFWdKAnzjtTtN0+xo3Ns7mE7G1vhuNXviicdeeekVZ12Mw4ZToKAppuVyoUh9CEPfL1ershnHGKwvENQ47IZhnLjrBwJDtQxtF/quF01ZhmEoKq/KKjDEuO565733ZeZN2l4AzCZv9p5XZpN5sj0djSchhPlqnc5my/X6+uXL8/ni9t17e7tbk3EjzJbIe2vIIxHIByHx/dAFPNVek4LUzkTJPrIAKiIqLuYrHmVfuPGoKIuqmYxOzxaSwBbl9GDn8SeeeOKJx6x1X/kTP/NP/+k/e+6FV4dheOudO6+98ublK5dvXL1MHO4/OPxv/yv/ra3tpm5qV9iXX3nz6Wd+YjZfOEcKAHpuIpqyGIs55RhjDLHrQuF917Vd3yEa2/jFYj6djs66VlIDKl3XhyGJwczsVFNMKee263PicVMP/cCsG9ogIuB3nksMQGN3Nl+fnq2m25PC29VyHVN+/Z07ArJ7sDuqm63tcd+2k61JXTWuOiMjH8xXen911EGYSvAKKZIMgwMRAEVar/uqrOqyRKMI4H05DINKXiyWy8W8bfumofl8NjubP3hwcnp25p1zzq9ff/PunQdF5Z996tF+iHvGVnVFBOvV4vD4ZDrdmi9Oi7KgjJBxk/UUVQewXq8r5wvfrxczArHWqpowBINUODOfLZ0BFLbW5iztMFhnEicTaIgpsSxWXemdcy4zs2QQm00mMsYU+b3j1RUaW45GlpG8d10IWZkMjJsmJUbhsnKWgIVe+PoLmeNksv+zX7n5+19/4Xj+vkUc3ncLYjfjrkOImjMMfWpXq7brcuaz07PVqm1XHeeAKggmhDy0w93bd+/eeafvemaZTkZNWbCI9fQzP/35yWj84MG91K2vXNqHnBaz+bOf+clx0+zv7dy/d3d3d0dFrTHeF6q8YeHHkEQwDqntu7ZP7Xp1cnS4XsxBxTubOa/Xfdt2q3V3OpsfHp2cLZZDzou2TZnbLvR9aJerqizL0lsDhffel8YaZy0Ai3wX3YhKX9vKjiaVMZRyZmZhLp311l66+tjP/uxfQjSvv/KaBejWw5X97T/3xWf+hUduvN8lhQ/C6FaIIVsEZzAbb1hBcq8tVtWDB8c5pRhC2wXmrCjrRRuGVBZljHDj5tU/8Se/0tTN5esHf/j1F711/8KXP3Nydjra2lq33cuvv/rM088+9elbf/Zf+rn/5G//vdGono7LqixjiHreI4SIyJxzzpzTMPStsSTsnYl9jyqucKAQYyRCg8DZqGjb94o4hJhyBiRCmEzHzOCMLQsrKitrkUBBCTvn8L2K3c5dXfZXc3pxZ8v3Q+TMnHNdV+jKf+Pf/Ld/6Rd+8fb91xNHa3Hv+tV1Zkfm5v7eV7/wqf/6Gy+/X3/pA5I7OgUneh3TIhs1IJnXXVfEJCm1664ofFl7b4ytaAjh7bfvrbu8WCzrqr71yPWyLlbL7rU33n7m048VZcGZl6v1vTsPnvvW66++8koY0meefeqxJ66N6tH1a/u/8c++1vWDNYZFjEFrbdd3IDpE72xA1BE01qoo9V303iOCtUaYRUUBY8wCygJEpmlKIluWfhhiU1dl7fsuUR/rshpCIkP0XXNb9d5ifmqdX7cdGaMCCqAKVy8dPP3Eo//Z3/tbR7OTvf0tVk2im5xUWdEzTzb7O/7o9P01Y31wjk0SOOulKlzHDCrElESLwq7b9elptN6VhS8rb40jAJXh/t07CnrlYHd7a/TVP/aTihCz/OIv/MnRqFmt1m+9eUcRf+anP183zdtvP1jM+k996tGckwgYY53lTbcac/ZFYQwSIiHRhlDvbBySsgizL533PuVMhvquC5yZdTJpRk2jqmTQGGcMbW+PATANqa7Ktu0MGUP0XZOYVMEQIigzA2I/9IYMEhVNff+f/xffePGNm089VdUlkN3Z2uaUh/WSQ5/ncw7vuyHuQ1GdFgIx5wopZsnKpArduvQlK2rkvlvn4+ycKaui63eMMb6weztTVSRLwlQVeLA3Lqu6rIqdnd2UUwzdSy++dHQyu3v75NLlLVGtypK7jqwhYVVCBeE8biY5JyW0hsbj0dUr+7P5/Gy+ttbubu/GlFLOs/mSkKbjZjQZhxDHoyZxBsS+68fjxqDth1AWdRLOy9R2rTAX3g0mviu2aq0lazlLynnIKTOXhUdEAl2t1n66pcgpBGetMWwtorXr2Xw1Xym+7+TSh2Wc9YkZwVsUZAQkwBBSSJmQrLO2MCKwaofZ/O2iKLYnI1I6OTxlUGYZ+pBiSFnruijLouuG07NFznLt6qWf+9NfPT06e+ml15qm6cOQmRUUAI2xxpqyLLYneyK5G4bjsxkSloV31hmywrxat6t2VRb11au7VV3mzMtlWzUFBhAWMqYZjRfzhS+KIQ0ppdPFOufsrBdVV8WwPi9nEiIBKJGoemM/86kn3rp7T0VA9PXbx6mpUE0YUkqRjSmKcn4287sHt3bq0n4d4P0xBD4C4l9UjgnqEV6aYDeXaNRbCwDMLFEA1JWFL0d9PxyeLZdtNxo3opiZS++mk4loXrXB2GJnd/eJJx/b3hnXTbVeDfcPj87ms7oZkTEq5wkfIiqrglCLojBYXLl00PXDgwcnTV1WTRVzPDo5GU/rm498ajIeA4Aqr1ft/t5O4kwxZWFrbAhD1ZRDH1KMq1U/9ENZVgDQLxfO0HtryogGlJ2xX/0XPieKb9++6+sixni87qY72znFxK4uK2e18s6S+8Iv/Y03Xnn+wfz/8X7X8CMTa+jW+nabJoYSkQBbawtn0BIoDTGp6LguM/PB3v7Bwe6V63sp5hDSZDr60pc+tzWd3L93cnx80nddt2pXy/b4dPH6G28ZaxCxKIoN5wMRFJQAEE1MuS5c4f3B/s7lg+0HJwsAEOFLl/b2Lu+ORvXQxw1yqkRkUIQIiUiV67peLZegnLJ0XU+0uWjUqQ3Dt1HYZBUVYDpuDrYnz7/2FiBaoqFvg5kIMxpKMbbrZbO7E4GNtb7eMZNbH2Da30epIMMKsywAgoiegYQUMqD1JRFhu+wE+FAO+659cP+wHjUH+zunD87+y7/3K2XlSl8gQohZld96687pbJFjIrLdMIjkDb8XkYQ5M4cUhtB616SUUkqj8Xjax9li6Qs3mUyAYblYqwAgMaeYMhqTYmThEFPmvO6TAOSsXR/O5gvnPCKAImcGMfCQkbo7xgSKqDEnZe263lgLCKKyXq73Lu8LKKsa64gwxOiKspiM++XRB1i6j0XyUFUD58DZIFWl0WGEtMycrbMpxvliOZmO56vV/ftHO9tjRAo5jZq6qgoReXA467s+DoO1nggB4dxTBBRVFN4Q9FPiEHIfBtdbIopZ2q53ySFhZhEVBGDOqsKcY4yZJTOqIqoAR84SIp+cnmxSeyJy89Y1ULO+cwpwfsGu21CURgWEtSn86WwBKtbaIcYYEyACIAuXZZWCdG072d7Pi9sv/95//QFW7ONVJWaVdR/6yArEKilHFnYFlZV75NGrN29d8UW5f7DzyPUr1w52CsW3X33n8P4DFa3qBkBAhUNQUUSj8FCnIrOKcJYc0xBSjAkA0VAWNd6mnEQ2ZRxOKYWQADAMvZxbHkJar7vMvGrbxFqWJaiK8l/9q3/lf/m/+HdKR/CwkS0qsoCoNHX5lX/pLzbT3ZyzAeWUgoIwxpjjEJumFND1ut07uHLy4PaOrbbL+v0u1I9AKl0Sn+XufKsjcpYQ4uzkrGWWsqhPj1s/nC67oQ25qZw3uBGzcGWRODOzKquKqoIigAGizCyqMUvog45Gbdc7a8qqMsaGmBRQFRBUQVOK1tkN55xzAoCQUl6trcG+6611yplFJpPtp57+4m//5j9mHN59bmOdIoLCct0aZ6w1qiBgvPeiwiqckois2269WPVDmG5NT1v98p/+udH/4T+cDe8vrfQjGhzw7igpVe372PfvBjhzQnh86jvWTnAfdDpt7s5a7z0aLMoSEEMImRkBVAEUVAGRUgrWGAEdQu8KFyOHGAHw/LhQRUDOzKrIogyIBADL1bobhsIXIWZmAZCYEuf8qac+ff/B3f/r/+nf79pv8+Nz5rL0kGm97ufzUyABBGfNEOI2GWbJKccUY5KYUx8Cp+5k1n/pK3/ejadwfPa+1ufih8qIwjvrqIoM2Kf8xKieB1j3nWUiNGRMSolZDKGiMqh9yGNBAGHuQ8R2EGTVjOjadlBQzmytyzkjIqMys2aOIYWQui6CAufMgjmxArDqZz7z2X/0X/1nKIvSQv9ufi+JZEWEEOLZ2WnhHCAiYT8kAF2vW+MgtPn0ZN4tFynr/ft39q/fc2Q2kL8vu/gJuRtmiggRwknCxbJ9+sZlTiyiKaUU04ac8W6peENbAiIGENCUcwwDi5RlhUSc8zDEnJlFNjWEnFOMsev6Vdet206YwxAJHBGpMIqOqnJ3q/793/09dKW+R+O2TRwTq0hK6ej4xJAhQFAwBKt1awjbdej6drFa9CFaguUqhpDpIYn0fdknAAZEiwSkhCoKb54sH7t25dKlSzHllFKIgYjMJuumqpt/WAGQlVkhZg4ppsjGGGMMc87naVIV5pxYRWPIfZfW634IKWcWAOOIM2/6qy7tH7z+0kuni+UgfkjfdvlFNSVmkax89/5RZgZVFSYAzrpctqv1erFYLZdtCJGM/eYf/MF0NJrNZqvV6v0uwsXDYAmMoU2NDRFnSe/dP/7iT36BRViUmZnZWDr/wjaXL4IiAkAWyQpKRlX6vs85ASAoaGYVBkAVVdG+CznHcxeLs3Mu5xxTAADO8pnPfeaNt+545wtPzn7XgiAgqOpsua5HI1XJoknReZ9SGvrQtq2IKqIjWrbd8fHRv/U//ZuHh4fvdxEuHoYs0Kfz+q2CCuHzr7xxdX9/Mp7oeTMaEIF1HsmoiqjElELMmTnEJAzCmjKnyDkLZ86Js2qKzDkL89AFUWbhnNmQqeoaAULKzJqZd3a3Hn/s0ZdffrkovHFaFN+R7M468r4yBmez5XQ6BQBQBASWnJjXq3Y2WxFi4eyQkgL8yj/+B6+98dwHWISLh0FUNznNjaIGGTpqu9XJ8ec++zmR7Lx1zm0yGWRIFZlFVDkzM6gAp5hzTilvundDjDnntu2GLqSUlstV24euH7o+MIu1ZjxqlDWnzDlL5i996Quvv/Z6GAISMWPK35GHYF5ba631J8eHfdsq6EPXmVbLNbMIYOFtYU3bdwjy9ede/trXXvwAi3DxMAB8e+yZMUQIasy3Xn75q3/8q3U94pwJ0RhrDRGC8wWLKqAqC7PqphVBOIv3bqNfHGIa+tB3/WLRdsPQ9V2KnGMGAFSQHJkZQawh58zTT33663/w9aqsUVVEy2L63udKqY8pe+cOHzx45eVXjDGZs3BmydZZBADNhbOA1KcECLZxIX4Q9b1PBgwAm4ZkJDSGDJm3T06I8Nmnn1UBInLOOl8YImvJWavCOfMmhsqsKUVmjjFyetjhHHNMeZM9TJxzTsYaUCECZgUQAiSy12/czCkdHh4ZRylnRCL67qychsERhhDvHx0roCoaa8uiElFrnfcWjQFljgkJVid3Pxhf7JMBA26eHYXFGOtLG8PwyssvPf7442VVkjGA4AtXNzURFd4ToopuisMsSoQ5ZwEQlZRTjrGPoQuhDwNnjkNiFULYeFyO0JIlIE7xZ376y2+88WbV1MYAEgBQzsN3PVpIaSNdYIhYNslTKQo7mY5Vc+F8VdiYRJRcMv37C9q+bZ8AGBDMRpdtk4k25KyzRK+/+eru/u6oGZVlaa2x1jrnqqoC1KIokJCFRRRVU8qgAgIiSoCZWVhiHIYYUmZQdRazsneWCBUxM7PyeFw/9ui1Bw/ujevGW4dogKXwBX3neIwhc+JsDQECqDJnAJMzt+tVynnUNNa5rusVYI3awQcUfLt4GGqCjVQGGQLVnBKRGY3Gs9lsdnq6M52U3lvnRNh5j4RlWVhvvXfW2o24BQIQkUVQhSSgSADonUMEJCBjVMgAFUVBhoTZkpaF/YnPfSZnWcwX1qCzDkSz5J29nbIs3/t4IqIixhDCeUMTIogwEaFq4W2KKeSEiPt7nTHf5yV/kF1wMsMAFMYMmywQoTIB0OYKBYRXXnp+OqlNjyoSck45GyI0ZhgG5xwibAQOnXXCrIiqGQAsUSZUAYMmCRNJ4Swg5pxVFVW997u74xvX9t96/fXSGCr84cnMO4sDzs9OvoMxtnlItNYYkU3zvUFEUUIg4+wmuIkpIsr9w14+qLzVBe8GY1AMEiAgEqK1VhWstXVZjcqKDDWjZjqZjMdNVRaO0FpnjC2KciMkuumqjTnJZkq6KmfGzcArRCLjnS2cQ0BHhlQsEQKWRVFa163ak8P7ohBjBBFrzaiqSKWpzXuTEWTMwZWroICkoEqwUUzGonCIiMYMMWbmypXd2n1gTdYLhsFaAkIFVQQlMAY2l4RxtmmapqyNsdOt0XQyKYrC+wJQAYEIkJAQiZBADZEhUuUsmHNmFmbJItYYS0SEgOiIjLFJ2BVOJSLZxXzed910MmqH5IyxBuvSA7miNO/lsgrzvfv3hdAQEZnMrACWDBoERAKKMatCs7dXTXc+8DpcMAxkSPRhnUVAVFVFCRCkKNzWdlOVPoRIFuu6bJqKgDbVCGtMVZaF96pg0Khqyrlw5L331hTWjKqKJfmicNYSATmjCpV1k7oY1fX2pGEGT84iEKqgFEXhnDOOFMqrV6699yHD0CPzZh4RACKhtaQMqpo4g6LxxRtvvPngzu0Pvg4fahU/tHmHGwGpzUWLSIjojFVAInTG1EVRFaVFszWZjJpqPG6scTEm75yzxjtnrSdjVNVbV3pfOgcAYMA6MtalzCI5Z06JFcQa09T1uBkTmqbwviwZtDSUWZuqckQFWUNG9DvcVkQkAVDZcBIQURVVuK6rlFgk/cTNPZGPRyXgR2CFoboom6pWhfNIWlVVDKE1ZABBxVoCUGMNojpryJgQB2sdy0ZCSAwBgXhLhBRTjjkDoAFSzs6g5ATkyqKovPXGOG+LqiwLxykZMk1dMkszrq213hglAksAGPv43vvBqQspqYgqOOe8dQBirbty5cpqvd4eVRNH7eK7A473ZRcHA2JVeREYNaOiLAABCVWVjDHGIGLkhGiEoSwKEUFSVYphAFBjkTmJqGyy1t5lEVFJIpuoLmZmPqeXDV1HgAI4GpX7+zvO+piSK7wSxJS7vuPMzmyiaHRkANUUrqzdu0/a5dCltGlZbOpi1IyGkF3huvUqcm4qs16sSD+URPSFwYCGXFmsu9iFMBnVllCFFRWJkFCUhpCYc9e1OYSu7UtXKzOoHOzvFdagYE6REDwZzeytc86IIABlFZYcM+cshEREy7arSteMxlXhDML2zk5dlQYxhFA6NxnVBJAlGxAgMrjxpvx7HlU225SINiQE5mwQU8o5proeHa5bfv+lnvfaxcEgYjiI8mLRpshVXRMhs5Ah3aTgMhu0BgGNvXppr12vc+adra3SUlmU1jokhE3ZJ3PMmRkQOKaUY+asmSWGqJKrsmTO3ZCts8zaDyGGQVWtNZJzygpgFEAVFalyDhFAQQHsw3CaBbIgIFlnNgoiIOq9Wy9XiPRg3t5ZdyF9KEXci7wbMisARM6rrgfUqipx4wuqGiRnTdt3MSswt20bQg+kzlkichYNgQrEvMlo5JRzCGGIOefMoll1w9921ivqzs5WiDGnhIjeucJbAMwxWWsQmUCNMYRgrQFCZyyhOY/qAQCAFQUAjZKhui5dYclhHPr5cmWdWXf9sPxQQntwsTCoKihsmkdCH4WhrqsNO4wArLUhxphzBlms2xBTZciAKZw3ZpP2xg1rj7NsaNgiSmQUFECJ0FgjqiIAClVZnJ0tATTHBELrVaugfRcESJVKbxMni4igIgKoQEbteYqBUBHVGmOIvHPWWmFZLtbM4oxNKYQPPfLqwmBQhZxFHiokpJy7vs+ZgXA8GTvv1us1p5RSWC7blBKgiQKKmpkNOSTaNJcnzillFokpKQgSAqghypkzSwYhREAsSocI7brf3h5nVUBlliElzpmBy8KBaNrUpjdlD9XS2k1vKIJag865wllDYKxFolXbkjF1XUpK+UPP4bswGApvJuMxvofChEg5cQxpc7JEZkUAUEfEzFXhNOeu7RBUN+N4eCM6AhuZKhZVBdnoX4gaY0E3/MnNVSNFUc7W6wcPTkEzGhpiFsWiKEB1azox1oZhUAVjrCogwvlIAzLOOe8MABpru75T1aZuQME7kzOHGPVDXc8AF5naU1l3nYIqbFLIKszOkTHmwdHR3nS8v70NCn03xBg5i7IY6zSnkLKKEuJmNzAzICCiUVUBYTbGACHnLCAGbCJWFetMTTgM6SStnDd10wCAI1Ay1tJq2fV9jiLOORgigCqQ85YGUhVQW1gDAIZoNJk6h2Xhua6ds/cOD/sQXAHwQdUyNnZhMDBrFzI85FsooKKqSuG9IRwi9zE5Z7NAHxMA5ZScM8YgZ1QFQ0CEOetGYE5YIEYEAEAHSmoAEhEJS+JE5Ffrru+6UdPkjTpc3zNzOwyquQO7aPshDq5wKmrIbgSuzLnSlXoH1lpRIONGTVmWRVX5nIqNEJyIrlYfdnDAxRxKuNH+3RTd3j2UCBCNM7Yu634Yjk7P4hA1c9cHQxhC6rohREbJLDlltsaocM5JmEWyMDOzCOecNpVQVUBEVe3CMKRorHeuFNaYQhcSIqUkfeS27/swjEZN6X0WZskoCgJxiITonR03fm97rIisaq0vy9oVtqzKzBxTAkD90KfShe2Gc030cyAUUYWVUZiziNmbThbr7u7JbNKUWTikbA1xz77wGZCFDUHgSAR8PkXv4Qw2QlW1gAiYOSsBgyroqCpFpO9bIFh0/bQmKFxRFv1qCENsyqYZlcvl+lw9k0hRs+SyKHfHdm9vKkm9c1/+iUdtUbWDWLIxLnPmrBA3JJEPZxfnsCqBfptmqKrvKnOFlMjYwrtluxxiIEIElSyZJeWsIsybLiwTck4sKaYcc0ycRYUzi6SchVmYObNkBgUETMwpswFs22FIKTOLZgIsynI0LjkLIBHApk1aQQXEGUaEyzuTReCirOraPvvZ64/c2o1ZppO6qvyj1y6Xxkwmkw+5GBezG4iMITx38zUjIqhuiHkx5ZIs0ab6CPPFajqZIGBR+nYIHpAffv1IZL2XkFFl18GaYZ0zIhphYwQFDNGGUSrMidVZVCBAUuUU86odhpDI2lFdiWjmLJJTFhUE1ZwF0QDQ7s7O4Sr4qtrf3Zot0+x0uTWp4lBWvozdYndUY7cdwv35h1uQCzqUVFVRAeQ9ZcNzfRLQmHi+XCLS7tbWfLFQFe994W0IfQiBjN0oswEiIjprOSVVHVnqAzCCgKggGU0qkiIqO2OFGZ1lSYnBORs4reYdoqmr4nwWpUpmPudeAiDi3vZECYRM3+Wrl/d3drfRufsPloSrLHx/tT49XXtLLLkdPmwUfTEw6AaGjdt/fjegntdUyFkHCn0Io526rutV322NR8xijAHEnAOzZtXMm3YTSYh3BylMRkMGDSIgoYhmEUS0omSxLNy4robQEwGRW7Q9iCByVZZDCNYYZjZkkLKADP3Q1NXeVlN5s7M9ma91PKl9YZ31OaWQOUdIKXdBRGHRU9f92HpKRAgPo9aHpgjAOamqtRYQwhBExZBddQOzKCALb1jdLBxjyjlvzn0FGBjzRmxSAd4NRlQ3vHwkjDkBIBmyzsUQBICsBQOJOeScRQQUDYUQchaDvD0Z/eTTjw6D7O5OnPPWGER03iAYVXbGqKqxMNmfxA89vvtiYFAAgW/Lqm3cSgAgBBYFgLYfjCFCZObS2D4MKWeD5JEQUFBZWFmEVUS/3QArQqCIdE7rUlUAUVVEQLDOeeetdWezRc58sL/vrYkxijAhOnIOLQjElIchiOJ82b785v0uaQyJBZC8qowa761lzt4AK4vAOdPsw9nFwGCQ/KZr4z2GiJuMRIghcVLRJKwIZVlw5lXfIqIAJN4kL0RUzj2s82K2et2siCCACsu5uiqWhTfGdm2XhUNMoFgUripsWbjS+/FonGJWBCRgzsK8cRbuH5688vaDk7PZbLEQlpwSKF6/dokcGUNkDSERwHLRfVss8YPaxcBQ1iL6XSKDAAAiigiIwJvhWMoGKTM3VbVe9UOIIQQW3tTaNuKp7x2rI7ghIyvQZhcoKBACIYRhYM4587Id9vcmZVnlxGVVrpYdERhncBP8ASTO1lkRAaL5fHX/3uGDo9O26zgnMmiINpNyANU7W3hni3I8rj7kglwMDCECy7dJtwj4bjyHSIYMKCJojpxiDinFnIyxi9U6ibCoij4UGKGNb7MxhoYALaB9yAFkYUUsqzolFsUhJs6RBVWVQUhRVFLMzlo0RhG8s9YYFWVh5y1Zk3KezebLxbIb4tlsNpsvz84W67Y7Plo0TXX1+n5T2f2DJz9Ao9V77WJgkAiogKhwPllq06uLAKgqm+I7EoGqJYuIISYiTOdpirTpOwcF2YhSvgun7lr0BGg2hTMEBcg5L5fzGGM/hPW620xiLOui6/pN3x0zE5GCGkRD5LxrKj8ZTcnYzDmmnJjbIaxWXd93b719//7RiQJcvX7ZeSciqQ9X9jaR3we3C/KUvp1Jgg3/BxFFGACEJTMjKqFJzIqsonbDFiATN91oIue3On7HV5jgrSytIdyEFJu4nEW6bogxhhBSita6mFJKqqoxZmGRc4oOsmQiQ4rjyfiRG5cPdndVsaqrhx2+God0//6JcM5Z93bHmeNivv7cT356vzblh7unL8xTUoWH3OnzDs/z6Ql47pVugihAEACDZpO2Y9ko+sDDDQTvsvIBQARAjG684c31vZHCSpyZU85I6H2RUhbhEHLKWURCjDHllCIhMXOOsW27fuiXq7apyps3Lntj6rK8d3T4p3/287/0l//EdNSEPj64d3jr1q3LB7uXDsbT7aIsfgxhYABBFT1XPn33UBLZ1C8NAFprQGGT9ENrrbHMLKJ8rmwugKC6UUr59i/HrCTgQCwhIaIoiopwCpEIrXOZcwwRgJkZAQyZtgsiqswGyQJs7+0+89nPHR6ezs5OY+b5fJlSvnP/sLAmxNB1abVabu9U+3tb+zuOOf3h175xNJ+lD8rl3thFZViVcCMQ8t4JgijCqsqcnfUiSUENkarq+UFEoKIKqhsgNolVfDgNHABgkDwCRLIkAICiCiybc09EiCiG4JvGGjOkjjkrasrJAAGRgCRmC/DISO8gKUCKse97ItN3XQjVN775+nTarJbdZ5+ZLJft2+88iH0aluseZkP/QXqt3rULS3SrEqrAezKsqowIRBuvXaw1LjGAGjKsG2X/8w5AVX1XvFZU3js0exOvGTjPk2y8KgBQ0BJJlUWQkEAREMkWZGPKOYuooEUCJAqzcPhGGMIQ8v7ezmrdrtdtiHJ8dtp9oy1doYAvvfS6BUWRsvLLZff1V2bf1bv4fu2CMqxYgGbF79DS2Ny2qqqAlowBI6DunDQEREoGJKOq4obCh4SkmPm9rqICRFXMmwhORUGFibAoKyKy1hmknJMlJyrrdgmqFlE4A5zf1k1V9iF3YVCRrh9iGMrCZYZhHVOfDbZb03o9z7UvnOej2fy1t9vhv9ES8X7tglJ7QkLf7WlvRgiJCigC6BDjxhUiBSSMqkSEpJIFDcHDKSSb4sB7bSO7hGgQUEUATVXX1hoyBkFzSlJ4eBj4ccqqkHIkY2JMItKDe3mRXOEoxsViVXpbWFM47Puh7aIvXNsHyNL1/awd5qvwgVtL3msXA4Ngb9EjiD50Xd91PDcZOUI0BjXxJqA7n0C14TURqigRnR9N/43ptCkKg1ELBGCIbOF407wmEIborJXMgkZBY0oWEVFVEA2IqkEy1kZRgwEVUDVGlsyiIggCMATOzGeSRQb+KADY2AUdSgCkvFnF71hEBAQUUTp3/IUQjLXKmQiZdZM+IqJNoUJFWL97nk4GYFASAUTvXUqsuqHUV4ioyiyaRDZYkiUyKJyFDCEikKgSojW2qpyKoGgfshLk86y8xPhhqwvfc0EuwDbhMwKinp9F7/79JjpOytPplrUOAZ21CGpoky1SUEAAa+wGtDHh7ne9xaacJAIKMaQUk7XWOR+G0HfrTb51Q98PMYgAgmFQUE0phRRSiqrijC2sLwtvSIk0seqHuoN/gF1YFI0ACErfmYtRVTmvKAAi/Ys//wvGORVWVWMIYaPwjwrAkgFAhdEo43ecDgwQlRAAWRGgqDwiLReL9WqdeePBMqhu6kLOOUOGhcnYIYU+Dsz8MI4hIlJCNh+aDvaD7GIOJQZwCooKoAS4WXYRMYaACEScsUeHD1jRu4JzVAWDCCAGkVFFWHjTmkJzI9+DuiiqiMYb792Q8hAGADCGdJOZZVGLoiIqBEqkKTKCGGNiTAAAiCKMhIjorR/1bgbvexbA+7ILixs2gx/onNhy/j1vBMOIkDkD0e133twej6xziKQKRIiCmxQHojKLKEj7PUbIRwWrCCI5pJiynoforGo2/ylzLqwvnU8pbsJGzrwRjGARENZ3fWii7mPGAC6y+qa6cZSIiIjcRtANyRCJwHmvzqbivzmpQACAFDY3hAIIYj7/se82X2s1wpQ4p/ie0ARUdTOOdUP1KL3jTcEVAMkU1lnrmLMKCm9gEJGYy4/OJfo+dmG7wdeqgRDROTQGYxJlBQDZRNab71M1i8Imn3HOmCCVBAqkAAryfS7OoQfnmBA3NK7zs/48ZEdRTSnlnEIMk7pGZw2ZlJICEJGykkGOaVNfZckw0fcpuf2+7cLoYszo7UYhDCJryIoA3hlCAlVrN9JK1HZ9jIHM5jBBVQQRVc2iigLyvS9PERhaRTqf0fmQ/7HZDTmnLCKGzCZbzueTcchauyF7xJSzSMrMWTSpvm+xsPdtF7YbclZjpRcQUVD1zhIBASHJOWtOBQDqsuhjjwbhPKMnCKSQBYDFsBqA702LCBlcBZBhMwlqw9cQUWFBBwAaU8zMZMgSqagwIygQ5JBZJDOjKoHQJn/+MdvF7YYMbdwcKWoIJ7U3iFlYgRXRWGutVVXrTNOMeCOT91B8b3NGWUKC79sGiwDA3xbM2pT6VARVVSWlmHPaTMnY1K0BoCpLR6Yoqo0YOIMqyI/mQ724bh+AKAqbm0Al5UyAhXeohCKEtKkNpZSE2QDGmDgrKLIqCKiAM87a75vmV4V1BD2vVm/iOWUFVk1ZYoyFLwyZzS1siDbShspZlAtfIVCKCRQw/yiW6CIVZARASIwCIKQsiGDBEKEIxhQAkFUFobBeWIkk5yysSKAMBmXdepblH/H7ZEBRUc4VwxSAWZhYdNjemZBBzkpEliwhbShogBj6HtEYg8jYDhzjh2Vr/zB2wWIND0sFKKLO2M0ZhYiwIWggoqIxlgitRUMYOW8qPYqq7vSP/nHJwBk25IPzv1GNmckYZSFAVM05bXoLEVAZANBaB8IqYlU0c/5YkxgP7YJhQN1wY75deCAy50lWMg8zHULGbCg0ztpN/z9nlfiDF+i84Vk3w4hFVQFBRIzxG4oNM7Owc36j4+md3Wh3GAABTB90DPf7tYtXF3tYRFMGGFJWBTSExhaFO8+DK6swoTGIhGCsUdWr2zvfNTvye5pRoIcIP4wegPOGhyHKQkCVd0QKqEnYWOucsc4Aalb8cCW192EXfSgBbCiUAhgSi4IiGmMANvPEyDonmZEQEEUBgQwhqd4+Of1hcp7yHndpQ0c7n5OOmFkU1DmLhoiMoXOV0cI5RDT24aDqH4ldsMjbhnkND+ksCmQIvbNEpECAyKLWGmVWESLaXLgsmH+444I3G+IhfWOTuxWWru2NRUVw1jnnjQkAQETeGlCTkhFE/HBqJO/LLvpuANiUWRCRrDXWOGeRLBFZY5EwC7MKodENkUMVASS9jwWizYbT9/TZEVlnmVk3LErOm5ZeVABEY6yKIJr8fUL0j8Mufn4D4KYvZPMHAVQiFBZAABVLKKwsWRRSSkjv9i78sD8voACbwUkZzi9/RMQUExliVlGjeN4AIcKcMhIB/ki/0E/AFQ0gAEiIqtbajR5GUZYsoqyadRN85ZQBkVmVSN0P/s13LSkAKeJmL23olCqgWZhzjin2oYshKZC1VoEAgZAI5OMv9nzbPgkwkKpaZxHJWktEZV2MRrW1NotE3ngrSoQsQmREKP4Qrup7DQFBzYZmqarMMgzhPM2XJWdOMapCWRYbWWQFVjT6Q3hiH5V9EmA4z28LM4gSYlWW1prCu6Jwm+wnC7CId85Zy5rfV11YgUTcw2oRAIAIb3JMzBpTEgXnnfdGRUU3UtAGgNKPyluFC4cBARTEeeucVVVnbQqxaztVEJGqrp11QwhdGADROQ+I8L5DKnEaEHRTX9rQ9xFRVFVUVCbjSVEUxhhjPRkCIGM2V+aPDoeLjxsMgKTcrbtNC6IhAqDVaqUEOXHMiQHKshqNRrJR63n/ke0AgAQGYUO530z3PgdDNMYISMqac0K0y/VaRUCl+sBSz+/fLthTIgJvMD0Mc1PKGzJf33VIGEIgMmVZFkXBzNY5w4L8vpmK55/95g+IgDB0vbVmkzDvuo5zrpuq7ztEYs7WeOts7f2sCz+aHXHx4VtWFAEkIMK+76uyQJVhiESGVQjIEIVhiCkx55glvv8ze0MJICAwKOfBw6apSFKSzDIMvS18irnwThVCGIzBTfLqR2MXCQMhjAwAbFr7AUTPq5LMCJBiIDKgEENkkcyZc46J5YMc2QjGQuac9Fw3zxARMXNKUUS6rqvrpm17zokIUREArUNr8MMrh/0wdrFae5AE5b1NhCDeuw213lqLhAISzqf3pJQiCXsy8L5dSY0xA5I+7ITYZDWMIck8ny9CzBuc02ZKE+eceTyy0/pHtD4XfCiJgkNID2cXWUMIIJsmRN1IMeimAqqIwuqc5Rw+gA8jKpH1YQJLRRmzGGsANQwd6EZ5HVOIhghAjIGYjTEGPuhkjPdlF61YjxvhGBRVUYhZFE1KOWcOIcUhxiGdd8KpIiEQZvkAwx4BYOPovqvSo6oimUUAgBCAJTtnz8e066YmQZX/sA3PP6Rd6G7YsO8AAHGzyKLYD4OxNnLWZBEUDanoxs/cpICMdcgPh9q/b1NAAQVRVFVCkZRUCBRW677wRWYm3PANCMmY95M1+TB2kbsBCXST1nzIjbCIhbUgPKrLce0K51JiACQi5721zhCy5A8wJR5gU+r7jv9xM9I4Z40sbR8QoB/C5teZhYyx1psP1/D8Q9pFwuCA4FxvDwhQFKKILxwSOWcEMDFYY5233rvSO2tIz2ejfvDHxk2lWwGARIEInUNnTIwphoGIrCFRVEDnnDM0rcsf+Jsf3i4MBgIgAEYUBVU1BkfjBpFyFmZdLLuYcWu7MQa8tYVzVVk5sgYMqroPGN/ied0UAQnPxTkEs0DhDAhvbW8Za5NACBEBCQ2Rjkr74XQYfii7SJ4SqtpNJwOCta4o/Ghcb+KGqqp2tsYEWHpviHzhrTNACCoEwvxBBIwelvnOWx0RFUGdN81oFFJm0WEYRGTVDdPp1BpHxgAYVznrP/asxsXtBsS9xjqDWRWQcs7LVWsNkaWy8M2oFk7MXJZlVVV1WTskOtd+/mCDBgFBSTdCi0D0rkSHGmP29g8QMcSsZEd1uTVtfOUBQEFIeav42CO4ixscAIqcEcQbvDmmm1slqMYQRdQaSjGGzJnFOldWJRkQkW838H7QU2KjN7NJsT5MuEKMYTNSi1Wr0u/u7qiCty6lmFlGznxhp9z+mPfDhUbRAKJYGB0V5tblrSvTJjEPIYQURYWZ9eE8uJyYhfGh5A98UNIEniuZAQAgojHIIiGE05NjBKnrqiocCMckjz3x2KX9nchyfVJ+6dbWVv3x3g8XGr4pIEBOWpbl1YPdpAKIAqpIzEBkjTWgKolDyqKgorIpA33QQ+KcKXN+sgkRWWNUQUU4p9nZacqcWa/sT/7Gf/8v/Hf/9Jc+vUVkYH+n+exe/ZG99feyi7yiASwiBYbp1vTxR6+JIiLkDE8+cu3f+z//u//p3/m7v/jn/sK6G2JOohtdNwUEMN+p3vM+DB9eCJsuFVVQIkPGZMWYhQFFpR3i5e3R3TffNNZseWVGY/3e3ocVvP2j7eJ63xQGBkUZROrtPV+4FFlEb1ze+jM/89ROo08+9cxLL764kZ1iYd0QLRFUgT6QJjbiQ92Hd3NSogyyO2muX9pBY2ZtWszn1uDpqh/a5cnRoREVhZR4Nd4GPAT9uDodLk66BOA4JU+ohM+//ObR26+vh6Coe7Vdncx/95/+g5ffPHrl1dfImP9/ede2Y9l1VceYa+3LqXu3k3bwJSZATCyCo2CI85BIKFGEwoP/AQnxUTzwBC9IUUQkFMkRQpEQAUJwJBwcx3H7Ervtdl+qTtW57L3XmnPysPYptxLLtNvnnKqEoaqHUkm1V+151m3OMcdYpvyVLz199dpj3/rWt0tN3x5oVYrmQhgFgDJADQRdu75/4uGjL3/5i8n513/33dR3t45P9g8m+Q5nfV661YFv3Z5utCZ6wYluIwPl7t3pbLEwukg4Pl3cfPvGzTfe/Pbf/k039BSK8Kuff/S5rz/z+c/9Xj8MwaPqgywRQ2kpARx4/Kj5zKcOSiPQdLa8O+9yTjsVvvYnTyowm6UbP79e7e68emKUSXV4VfrhAY/J94eLpos5QPQOgdAV8LNlf7boQhW6YWjqWiQQ+uILP3nzpVeutoRTmR0f1tbwIY8y0pxXGnn6iavqfvt0uczm4J07Jzfffme3EizmJE340xd/dmW3nmY83tbtpE0bZvBdeL3BIz1ZcDjhqnY66C/uniF1s/kASEoD6WfzpS7PXn/9tjGQGmtNH9370R2ucLe2rnfc7yyWkaPk6J278+n0LLfx5GxBRzcM0zRpkzokAirt67fXr5NxLy6aElC5GN0sqQslGxy4cdofsO8G5iQCZ5Abt+48slfNOoNbFbC/g1sPZMHZCnqTWZ+HIdVkoKuZkKfL4eT2Ha389kkmhcJe2SUnXN0XpwvPm21DvGjbbgHBrMxKgau55Nx7lNhEJDV1wjPfOe4einqyHGCezfODFsSiugnmgy36XsSdFKGbdUN/cuudU4nXFxVAMzOznOFUhw3DvDTHbw4XHIa+Q1t7lNCVa5llIEKkz8VnaqyM9Rbmgy0GVchEbP6gfkYDEWid8niRqmDT3koLu5ovk93p8kKDUOF0NotsdEboO4vefoOTGQBiRKwkuyf1GOigm6tZl5GL+3bK7kw5T3sbzA06yfUDa6qNC7yH9xaqzqylBE4riogwN3U1IVLWZTana05vv/Xu3ZPf6L0hJbiCkV22QktRM0++XNlMQggzpR/P1dWrGN7NH5FIfA+yIhlqybcXfmXSECAFUHcORjOvmiqa55z6vrdIMprpjel0nf/zB+GiD6yl1u/ojJYMK+XVLll2FK0Fdd+rfNpld3dVfjyBqd59AiwGmy5zoIeqUe3MsRxMVfrcKRkoDslq8Hxjmk7vbjzRffFhUFhQTwzJTEYjB++yqtHVQYh7pBznZIimpVfxwZGBHMCE06UGIqdULi+LZMXWGOZmlnJyBCHfO1n0s41zZC4Bsd6hNmqrnjdtJh2lfkACpqYpa6ADa8h05kQRzpIHUE2L5mGf3d1DiOrmYjdP+5NOYT4f9O7mqUqXIAwAABJFMQGAmy8zFurnxpzdoNlZWQ7+IPfnX4K6G7wz0Jyj04Zrab+SQDjMloMlczjEtkGSufhFCUVGwUv21IHiKuJFlh5wN+vcAarQ18EoNaDQlxNE6AYhOBjzoAh9DIFWZKvNHdk+tnHPfeBShIFEIzCIjkqI5RwJERbpJAAUJl1bdk0IUekcIigOirNBYxVb0+JewKLfw9zb/wPyZAEdk7EjalQ9wqja7RgFEZ1msr5UsyZUMHeoGgCS6hhSJlAM4Bww1bOu245ew6UIQwZm2ZBzaWAWGe+s50Yn5ac1ppoLPWf8fr8tjlUVhRAKHYukd+ebV7QCcEnCACC7hyqE94W772EUrdrK19hpoMCAwrQZ20OLTO58vkhDLtnYnLaxKxRcljDUdYQIIE5RU4yyMuWXD85N+hAoVppaXmi0dAeBoutnq+duB5clDDn5ThWioPjnjWtEiUQ5xa77iQRk5VcWwigaFGKEjAyaLWo1XJowDEV5VcoJ9X3bDBTDC96Pas9HQ9F/iyzNDUoQo260lVaUj+8Cff+4LGEwYFH0njky6nCPjZXjY/uTfzDG2SCrR6VUVkR3Rx2293IuSxjgnvo+EgIJZPVLWoabOTQ6ADcZd4cV1VjgriIS6/pjmurdPy5NGIp3NMd2xJW8/0dUi/mI8BXXfvQBgsdY5A+LJdO9x+XN4hKFQR2uOkpo+ChxBGC1Oq3/gzk2O4ArZ6GRZexECGJbkMFd4RKFAQrXQvXVIFxRHTHOhg0sD7LSXCyiVySzqqnCi8Xi9jQzLkVOCQBICRXppIGE27miM89X7XXDVmK5YzOku6qpEO4K47ZWJFyi2eC+SnOzEglVECHl/bVoE68klBw3x1hHYRWkJDaEsrk96VdxacIAQPsQGIkgsirDneOBWdwfBq4OAO/nrXxl8KdOrsMX/f5wicLgIjo6cYtb+aiCHI286QzrfisOOF0K19tgDnUftwoU6dwtHVgvzd4ARIEIzSGkut/rwEw6GQHT9dG2xqlQ3jjHxuxRBbmYGWwxqXRZZkNLmYQgRBTGgBDH23T5MncRC9WaX4yAUozPVgQRriSkAYDYSmt6GcnlwISgIZk3k7ZqqrZpqqoqdgssL0i8CrJXr635qeju2iq5tDogC0tqqzTsbmu1uBSL0j5ZV1VHe/S3rhzt792ZLixwPu9cDeYloSSgOKFrmw4tUYl3dAeKWUpdV20V6iou+2EYErxoH+YtHJkufjZEYieGVFlVydXDfYjs7+1YQtZ8r+unAHRbcm1eR+Kg2Vh2hZijFqmretJWRUEgwRCUW7nEXTSxnjzcCckA58Fe2w9qhk512XfuDpY0A1b2rWhrGfID6Yv9CggYaA4QqtY09WOPXuvnCwu0IiLg9Lwd+4aLng1NpCpEJMZQ1XE5pCHb9HQ2my9Ln+xqQRgFyNzXtkIQY1WVgMEPduunn3yky9otezMPIUSULWI9j/twXNhsILB3uO+pL/7mu5M6e1jOu1jViz6pjWa4GLOtFPDcEGldYxB3ggYneDbr/uvHr6SU1Inz9muRAMubr0lfkDUr0e5OuFhQVRyMIcSYNGWzbjkMfTa1bOPd2Vmi4G1by/pOrAYYMTqTwruk1987GT0eSlqvCNpvJc16AbNhssvGqJYVEmDJebDTmsvQJwbOlp1qEV8bmQAOjMVpgaMCPq5jfIHcU1iVktRwX3aDk2pWNB3cEITueEAhrfsfzEb/+q8+rG2rvTaKClSjuDmKaca8652SivMdHPBRFQ8ugBCmtlikbljPSALQjNbTJCB0gbuZqplqOROU5GvN2MjGhXy2Nxuaik8cSpdldmYGh0uCk4hRlikn1SBIg/lorlecL2jOJgod6rbM/brcv4qDkq3Sevfm0oMEpyS1UgrK5gFC8EHV/e4LW5oNFfHklfqwrYek5prNs5fuheCOfhhEkFLOOZuZ25jfdiAERKE4FPwoHib/BwTIDj0vQTtkxVt2txgoYyqFRvSik7DZz+s2wlDVeOYT8aCVWY8+ewaVdEKEoZKUcxChsywLxSCMRaNYuBNFwEAi1mvcLRuSDq7oSV5WodWBLJKExxBEpOzhjYRmk1nvbYThiSuh3Y1JMetzMpi7wUkEQtyDiKsNfTKDhABASAdJNiJ0Ol1paVjPzlxg7gKIKtwccLgApOzWjZB1LMIyjAyBEHjv+TBscIvYeBiaIFerMGRkt049OwkJLjFUu20zMi/cHRhUsykKS4kS4WLZgwFYJs+6zpPjAohjYlX227qKsfDGQ4x0G5JCNWeLkQE8OjiIMSyIvRg3dJnbbBiO9puv/P61JsTkkiCTmk10Cg/3mqPdxrLu1LGtRMQJD9RKdKfGbiWt+D7RRHRqiz4PG2C37wRUQADrINcO2hKTk7NZyqaqMUrOauZVlMV8UTYyC7IhU4cN7jxHbfXnzzw2O56d6SgYVgn3allmdDm3wMFe44blMNC9jRCJZkYALm4yG7r5xq6vCiTzFhzoJ/M+pWG/4qDIjgCWIijcNecgBGBw0g3yyf1wstDpms7N59jUbCD4xat7rdnNaX/SQZomO5IRIQSHuOWcZ4thvuizWi1om9A0dfGIhpu7btg2HjcVnSHCG0FwVERbSSDczg+xLIQxghUL3dxClD98qHmkWfPHd1NhaKpYh/zOe7Nbs7S305wu+nmXQhViVUmFKiIEg2WhTyo2baiiaEo6qCvEXDafXh6A5fn1EBCyrbjfMMgocVmHUNZCCtT9nPXdtnzq6pqPTZubDSZIQ05X9icSwq3TQUIlRN8lUqoqTJo2BAnBKQAkDZoHHWkSziFtI5XTF3ogAUCIKL7XcL9lFRirEGlBpHAIowjMqsAqytKkadjGZo0j2VwYXEMY1Cdta8DBTrM7qYbsQ8pRGATd0KsjxCDiOekwaCFDZPEkPttKx1kGZo5gDh8b7gyY1GG3ZnAjZVKxqUNVBYHXtRxOYhWkB0N86InmsTWOZFNbdPCq9vZOt1gspg8/NIn1bhNizqe7VxuhTWc94QJv60ZzGiwXH43OZBKa40W36VTaOTIwdRwC0aDmsRIJrGkAs0PV1RXwqg5tG9vIKIHwU1tMq1trHMamwpBNlq0OS2uYP7Fb35imbhi+9NQjh4d7L792a2+nc9bL5dw1p5zpnh29xuC2ukVsD9lhBiWYvKogAmGYNNKlLIyVe7lLh5WMsVAAO9qp3jlZm5/0phalpS1/0p08ts+D/Xg26+7ePd4R/6MvfrZLqpr+7E+f/cu/+ouHr0xyStklZU+ZlZvm/G63rizq/YIlv0SoI2UbsvUKJ5IWrj/HWixQVdWQs6olTQ+3zRql7Dd4b3j3Dfyo7j/92Zyns2A8PNx/8Wfv/Mu/vXx4ZX9/jz/4p3+8czxL2fLgmiWahV2bTrc6D84RQTUKfUhO1d60qWPOCHQzlWAi7IahtIB5TnNwp8oUYk3dqRuvtErA77R4/KB++6j2t5K6qcSnfvfam2/dXg79oFA3WjgbbO66nVLXL48QuBZhIkoEIlSBoaoqdn0qNslNUwFIOe1Xod2dLPuck7Z78dUbs25Nmfct0QM/ucsrV+XTd8MvDlyNOaFb+m5TJemqXZ+eheMT1614Sn0grgYeBM4dLl617Te+9uwbr/z8znS+M5l887lvfv/5752ezZ78g2d2D4+u/+j7e5/6zJe/8uzy7v/8x49ee/7fX13LALZU9rk191tzfQNaE5MmwrhjXCSdmS2PkX17jeAfiIWhBSFwoFsOjz58+MhDX3jhxz81k69947mzt9+4/vprz37hc1effPqtF39wcHT01a9//YXnb1571IBfqzAU9EA/w9ksv//z5UDn/p7qQ6BQBrMguPbE43//D/985ejoFz/9foJef+vuwy+98BSO35v2V4b5/Nar1vG168frGsClIE9eBmTA1XcjGsp3n//Pa9eOFosuLd/7zne+d/PW9Hh69q8/fEmHZRrS9Vd+/vorr/zw5bf++5WX1/X0LXbC/zqgAn67qnaC365VgjA7GKsqAkbXTxweLHPX5eGPn/7Sj99c/OSlF9b13P8FHCIDC98ZEuYAAAAASUVORK5CYII=",
      "text/plain": [
       "<PIL.Image.Image image mode=RGB size=130x256>"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_img = PILImage.create(data_path / \"_marvel_example.jpg\")\n",
    "res = predict(test_img)\n",
    "\n",
    "print(f\"Marvel character probability: {res}\")\n",
    "test_img.to_thumb(256, 256)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2: Gradio\n",
    "\n",
    "See Tanishq's article [\"Gradio + HuggingFace Spaces: A Tutorial\"](https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial) for more detail on how Gradio can be configured to demo just about any ML model imaginable.  I present here a bare minimum explanation of how it works and of the settings used in this particular demo."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll start by including a markdown file with information about our demo (e.g., objective, dataset, training procedure, results, etc...).  This information will appear at the bottom of your gradio demo (assed to the `article` parameter of `gradio.Interface()`)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"../gradio_article.md\") as f:\n",
    "    article = f.read()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The UI is ***defined*** via a call to `gradio.Interface()`. \n",
    "\n",
    "Here's a description of the parameters used in this demo:\n",
    "\n",
    "- `title` (str): The title of your demo (appears at the top)\n",
    "- `description` (str): The description of your demo (appears beneath the title and is markup/HTML friendly)\n",
    "- `article` (markdown file): Markdown with explanatory information about your demo (appears at the bottom)\n",
    "- `examples` (str/list): Location of pre-defined examples users can use in your demo\n",
    "- `interpretation` (callabel/str): A function that returns an interpretation for the prediction (options: \"unalighed\", \"horizontal\", \"vertical\")\n",
    "- `layout` (str): You can specify either \"horizontal\" or \"vertical\"\n",
    "- `allow_flagging` (str): Controls if/how users can flag predictions (options: \"never\", \"auto\", \"manual\") \n",
    "\n",
    "See the [docs](https://gradio.app/docs/#interface) for more info.\n",
    "\n",
    "Given the below, we can see/use our demo straight from out notebook!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [],
   "source": [
    "interface_config = {\n",
    "    \"title\": \"Is it a Marvel Character?\",\n",
    "    \"description\": \"For those wanting to make sure they are rooting on the right heroes. Based on Jeremy Howards ['Is it a bird? Creating a model from your own data'](https://www.kaggle.com/code/jhoward/is-it-a-bird-creating-a-model-from-your-own-data)\",\n",
    "    \"article\": article,\n",
    "    \"examples\": [f\"{examples_path}/{f.name}\" for f in examples_path.iterdir()],\n",
    "    \"interpretation\": None,\n",
    "    \"layout\": \"horizontal\",\n",
    "    \"allow_flagging\": \"never\",\n",
    "}\n",
    "\n",
    "demo = gr.Interface(\n",
    "    fn=predict,\n",
    "    inputs=gr.inputs.Image(shape=(512, 512)),\n",
    "    outputs=gr.outputs.Textbox(label=\"Marvel character probability\"),\n",
    "    **interface_config,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The UI is ***launched*** via a call to `gradio.Interface` instance's `launch()` method. \n",
    "\n",
    "Here's a description of the parameters used in this demo:\n",
    "\n",
    "- `inline` (bool): If `True`, will display the interface in your Juypter notebook\n",
    "- `inbrowser` (bool): If `True`, will launch the demo in a new browser tab\n",
    "- `share` (bool): If `True`, will create a shareable link you can use to access your demo on the web\n",
    "- `show_error` (bool): If `True`, errors in the interface will be included in the browser's console log\n",
    "- `enable_queue` (bool): Controls how requests are processed (**Note: Set to `True` for request that will take a long time**)\n",
    "\n",
    "See the [docs](https://gradio.app/docs/#launch) for more info."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7863/\n",
      "Running on public URL: https://55030.gradio.app\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting, check out Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "        <iframe\n",
       "            width=\"900\"\n",
       "            height=\"500\"\n",
       "            src=\"https://55030.gradio.app\"\n",
       "            frameborder=\"0\"\n",
       "            allowfullscreen\n",
       "            \n",
       "        ></iframe>\n",
       "        "
      ],
      "text/plain": [
       "<IPython.lib.display.IFrame at 0x7efb8444e190>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "(<fastapi.applications.FastAPI at 0x7efbdecab100>,\n",
       " 'http://127.0.0.1:7863/',\n",
       " 'https://55030.gradio.app')"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "demo_config = {\n",
    "    \"inline\": True,\n",
    "    \"inbrowser\": False,\n",
    "    \"share\": True,\n",
    "    \"show_error\": True,\n",
    "    \"enable_queue\": True,\n",
    "}\n",
    "\n",
    "demo.launch(**demo_config)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Once we got things working, we need to put all the above into an `app.py` file like so:\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 3: Deploy\n",
    "\n",
    "We'll be deploying our Gradio demo to [HuggingFace Spaces](https://huggingface.co/spaces), which Tanishq desrbies like this:\n",
    "\n",
    "> ... a free-to-use platform for hosting machine learning demos and apps [providing] a CPU environment with 16 GB RAM and 8 cores [and support for both] Gradio and Streamlit platforms.\n",
    "\n",
    "Here's how its done ..."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create your \"Space\"\n",
    "\n",
    "We start by creating a new space on the aptly named [\"Create a new Space\"](https://huggingface.co/new-space) page.\n",
    "\n",
    "I'll be using my favorite \"License\", wtfpl and setting this up for use on the fastai organization hosted on Hugging Face.  I'm naming the space so folks will know it derives from lessons learned in the first session of the 2022 fastai course.\n",
    "\n",
    "![](hf_space_create.png)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Set up your git repo\n",
    "\n",
    "After creating your space, you'll be offered up some instructions to configure the git repo managed by HF.  Here's the approach I found easiest:\n",
    "\n",
    "1. Locally go a `git clone https://huggingface.co/spaces/{your_username}/{your_space_name}`\n",
    "\n",
    "2. `cd` into your `{your_space_name}` directory and copy/move all your example(s), models, etc... into it\n",
    "\n",
    "3. Install `git lfs` on your system (on my Ubuntu 16.04 box it was as simple as `sudo apt-get install git-lfs`). See [the docs](https://git-lfs.github.com/) for more details.\n",
    "\n",
    "4. Configure `git lfs` for your repo by running `git lfs install` and then `git lfs track \"*.pkl\"` to ensure it is handling the BIG files (in this case our `export.pkl`)\n",
    "\n",
    "5. You may want to update your `.gitignore` to remove training data, etc... that *should not* be included in the repo.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Define your `app.py`\n",
    "\n",
    "Spaces are organized as a git repo that contains an `app.py` file with all your inference and interface configuration information. This contents of this file look like this:\n",
    "\n",
    "```python\n",
    "from fastai.vision.all import *\n",
    "from fastcore.all import *\n",
    "import gradio as gr\n",
    "\n",
    "data_path = Path(\"./data\")\n",
    "models_path = Path(\"./models\")\n",
    "examples_path = Path(\"./examples\")\n",
    "\n",
    "\n",
    "def is_marvel(img):\n",
    "    return 1.0 if img.parent.name.lower().startswith(\"marvel\") else 0.0\n",
    "\n",
    "\n",
    "inf_learn = load_learner(models_path / \"export.pkl\")\n",
    "\n",
    "\n",
    "def predict(img):\n",
    "    pred, _, _ = inf_learn.predict(img)\n",
    "    return f\"{pred[0]*100:.2f}%\"\n",
    "\n",
    "\n",
    "with open(\"gradio_article.md\") as f:\n",
    "    article = f.read()\n",
    "\n",
    "interface_config = {\n",
    "    \"title\": \"Is it a Marvel Character?\",\n",
    "    \"description\": \"For those wanting to make sure they are rooting on the right heroes. Based on Jeremy Howards ['Is it a bird? Creating a model from your own data'](https://www.kaggle.com/code/jhoward/is-it-a-bird-creating-a-model-from-your-own-data)\",\n",
    "    \"article\": article,\n",
    "    \"examples\": [f\"{examples_path}/{f.name}\" for f in examples_path.iterdir()],\n",
    "    \"interpretation\": None,\n",
    "    \"layout\": \"horizontal\",\n",
    "    \"allow_flagging\": \"never\",\n",
    "}\n",
    "\n",
    "demo = gr.Interface(\n",
    "    fn=predict,\n",
    "    inputs=gr.inputs.Image(shape=(512, 512)),\n",
    "    outputs=gr.outputs.Textbox(label=\"Marvel character probability\"),\n",
    "    **interface_config,\n",
    ")\n",
    "\n",
    "demo_config = {\n",
    "    \"inline\": True,\n",
    "    \"inbrowser\": False,\n",
    "    \"share\": True,\n",
    "    \"show_error\": True,\n",
    "    \"enable_queue\": True,\n",
    "}\n",
    "\n",
    "demo.launch()\n",
    "```\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Define a `requirements.txt`\n",
    "\n",
    "We'll also include a `requirements.txt` file with the libraries required for our demo like so:\n",
    "\n",
    "```\n",
    "fastai\n",
    "gradio\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Commit and Push\n",
    "\n",
    "Simply ...\n",
    "\n",
    "```\n",
    "git add .\n",
    "git commit -am 'initial commit'\n",
    "git push\n",
    "```\n",
    "\n",
    "... all your code will be properly pushed to your HF Space's repo and your application will be spun up for you.  And voila, you now have a ***free*** web application you can use to show off your machine learning prowess just like this one!\n",
    "\n",
    "![](hf_space_app.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "8d7a979f659379f6312caf3993ac2ab4b165620bf8bd7cd5a3069321dc3c91fd"
  },
  "kernelspec": {
   "display_name": "Python 3.9.12 ('fastexamples')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}