Spaces:
Runtime error
Runtime error
File size: 57,185 Bytes
4ad6955 b095443 4ad6955 b095443 4ad6955 b095443 4ad6955 b095443 4ad6955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Marvel Character Probability Model: Gradio Inference Demo"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The objective is simple: Thwart adverserial attacks from DC fans who may want to abuse the wonderful [Marvel Character classifier](https://notebookse.jarvislabs.ai/jY5fsv-S9jKoQQrgd1dsoJuCDt6pTg6ZjBpNK9afxLIGInQv4OlHVuTMHqOPh2LU/) in hopes of having DC characters classified as part of the Marvel universe (the unspoken obession of every DC fan).\n",
"\n",
"**Gradio** allows us to create a web application for our ML model that can be used directly or embedded in another application (e.g., Hugging Face Spaces).\n",
"\n",
"Two resources were fundamental is helping me figure out how to make this critical model available to the world via Gradio and Hugging Face Spaces. The are:\n",
"\n",
"1. [\"Gradio + HuggingFace Spaces: A Tutorial\"](https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial) by Tanishq Abraham\n",
"2. [\"Food Image Classifier\"](https://huggingface.co/spaces/suvash/food-101-resnet50) by Suvash\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/wgilliam/miniconda3/envs/fastexamples/lib/python3.9/site-packages/paramiko/transport.py:236: CryptographyDeprecationWarning: Blowfish has been deprecated\n",
" \"class\": algorithms.Blowfish,\n"
]
}
],
"source": [
"from fastai.vision.all import *\n",
"from fastcore.all import *\n",
"import gradio as gr\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup/Configuration"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"data_path = Path(\"../data\")\n",
"models_path = Path(\"../models\")\n",
"examples_path = Path(\"./examples\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Utilities"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"def is_marvel(img):\n",
" return 1.0 if img.parent.name.lower().startswith(\"marvel\") else 0.0\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1: Inference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We start by loading our exported learner from the [training notebook](train.ipynb) via `load_learner`. \n",
"\n",
"`load_learner` returns a `Learner` that knows all about our data transformations and training bits, allowing us to use it for item or batch inference without any additional code."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"inf_learn = load_learner(models_path / \"export.pkl\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We'll modify our `predict` method here so that it returns the probability of the image being a Marvel character as a string"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"def predict(img):\n",
" pred, _, _ = inf_learn.predict(img)\n",
" return f\"{pred[0]*100:.2f}%\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"... and we'll test things to ensure our predictions look good"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Marvel character probability: 41.55%\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAIIAAAEACAIAAADwbjnNAABzl0lEQVR4nNT9acxu2ZUehq219nCmd/jmO99bI1kD2WSTNLtbFGV1t6S2WlPLUhI4CaLEkpHABmQERhwYCZIAya/8cAYYQRLHcQIBsa1Yii150NTd6m71RPXAoea56o7f+I5n2MNaKz/e7xaLNNlkTfyKC6gC7kXVi3P2c/bea3jWsxB+DK10dn9/63PPPl5q+MMXbi96+OnH9mbx0gt3/rAZ5aE3y8Ugijmni37SH9bwoh/gfdtTB5MvP/lIO/Lo6e47pympraoGOVEVcu/94O14Ph+gPtB731rcWb5+0Q/8w9iPEwxVXTcT9/PPXs5cnC47MLYbUhhCRiQCAvLOE2EKQ9NU1rudOMyO17/yzoOLfvAfbD9OMHzlJ79w6UoVukVOqQ2wXvUpRYPUDqmuS0KMYRhPxpwzJx5Pxs5TWTSv3z5+4/Y7KfFFP/4fZXTRD/DD2o0GJsu786Pj2ax/+/Zsve6a0g9dBDKF98v5yhI4Y1eLdR+idf7w9HToI0f+3CO7f/3ZW+NP9gdnL/oBfii7dMt89ublWuqzZVi2ad3F01l7sF2NSjMyCb0piur6wdbNg+n94/livUZTispq1XlfDAEWTSneQYwX/R7f1348YNiunwyKx+uwnHXzZTyYlk8/Mf7sY7uPHkyeuLazDOmFB/DsZ5/97DNPhm61PHnnuZfe+f1XTn7zW/fOFgsuyxXJ0ze2ju4cvxP0ol/le9sneqturCrtz33l83lY3b+/9qSfv1V+9np9Y6/e29u5vL+1vbNXjabFaF+rXfVTBNVuHs/eXK5Ov/bCg//3L798tAhFQWNs/Vsnf/dBJxf9Ot/Tfgx2wxe/8Mebpj1cDDtj/5kr5VefLL2HJIKIRTNFX7FiVjQqmDoRVSJ1o8K2P/OZK4T67/2XzychLGq5OnaH3SdzP/wYXNF33rnz2ktvcJJJ6W5MXe3QsDiyjoyxHtCIqMReOWoaIA0gjMZbWxukp65tPXltD0RWra5GE3PZX/TbfG/7pMNw+dLlg600P+vajkmSVVVWUXLWNVVdNqNqNCnrsSIoWhABAFS1iEQms0wb/8zVQoQVUaIZJXPRL/S97ZMOQ1VyYUxZNWdnHaSQU87MRFR5owppGFKOZrQD5BVLQDLOI4BxXnKWIXar5bNXfe2QGUCBP6npjU/63RDaL7jxCwgonIF5HXPAaSu0jGZoM58urhkgQSSraRHaxXrdBnCztm/7tj9b7XvZqfD6dvEHb61qtpx2AQ4v+p2+h33SYbhWnuSkKgDCBvVwtrr3B6t5tKZpmvpw28On9+jZK9NrNx85ePyZ+Vvf/M9/+RuvL8lWVTOebk/9Y3v+2ohu7NXfeGtdOLtdlvP2ol/pe9knHYZAb+cO2j4UjkS4HeLuqHr8Jj3z7K1y7+qwnD/3O//81+4dfznZg0v7aXb2qes7B6kux/Xe9Ufnh6/6vM7J7YxsEgEypm7h9KJf6XvZJ/1uKHOBiKpgCZyja7ujpnDLNfz+myEVB08++anPfvbWeoi+GVEx8d7t7+72YfjW7f6VeysTw3Yp3uhW5UpvifvGfkIzS590GEZajKopM1pD+2NXWXju9iLV17/xwoNF8J2Mpts7B9vl5St7dmt/+/LV/VtP3njqmVcO12+dLF47TkezPCrKyjmQWBc6ssVFv9D3tk/6ofSt/vSr1x59cHrmjWyNm8892oxH5TIc/stf2vvC9MHl7Z0/fHF1sD3aGTk1YJw/2L5SbfH/fHsiq1NKcPnKfh5a7/sbl7emNX7r9flFv9D3tk86DOuYP39jvEeTN+atiB2Pi196eqtnX5XVpKbu9N7y7PjJq82kZLU1OpT+bLL35Gi6zf1VMmz6o9N2eTBx/7O//BSl1T//5ssX/ULf2z7ph1LftdksHj/wE0ddzPeOU058eX883SpB+/msH9X+8o5FX9De0/7gUeJes2BRu3rLoEnreUpxa2zD8eH66O1x/QkN3z7puwEAbBGffWz/m3e6PunJPB6fGuODr61BePvu/I0H6YXb3R8Lb15e/cevvPXg5u70xk5CdspRVqdh3cYwLNfLpz+7ezivbp+9dtFv873txwCGUWNtCUk0ZhE0y7W62WrCrh6Vz79+74U7q9cP+zcfpK98Pn7t9dlnb+zc+NKfgrCGsNacEvkuox9tTa994a6sj9a/AfBJrDr8GMCwXsNioc5hF4SZItNiOTi/RNKnHx1ZA5cm9qe/8JlPP3Lrs5/qJo9+inwJ3Tz16yyamfokO7sHqOHv/O4/6btPZPD2yb8bAODf/68OTzpTlijAyyG2MXUDPzhd3j66/2DJ5JqDS7ee/dxPnAR9u6PlOuX5HRjmsV+kOAwxdTFbTCdHs3/4q7OLfpXvaz8Gu+Esre8cBw9OdZj18WhmKgdngQ9X7bRpnry8V5C5+8Zbtx55oh3aN9569evPv/D5R3eaOAsBlmGIGp9/++xXf2/1h39496Jf5fvaj0H1DQCeurrzzJ5vU7p1aXu/cSnCi0frqzu+tPTFZ58elz713aWDK4yyXh2/fXLScvHzz2yPCj8P/TK0/+Evv/n/+82TEFYX/R7f134MdgMAvDnvn7i6g/1pSjxbw3wdfWEmlVv3aTIZ/emf/wVX1wo+hOHOq1+frf/5G3fOTtpxXfj10N87jr/7/GEI3UW/xB9lPx4wpJCKFFxRrbsUjC4C+wIXbUo5/qNf/Y3nXnzl2sHOpCymPu2M9YkD+xuv4bJP945nd0675985fvuov+g3+AH24wGDcL53tNi7NBkyoMBsyBJzWZQauKotSXe2hH4tUsiwtrNMh2fz1TB+60H/YJH+4E4n+oksQL/HfjxgAIB/ftr9lWceW53NFx13ahtfGGtHtd8u+Gd/6uknvvDFGNLJ6y8C56O3Do3x75zGr718MpluXd7fA/jkXs4b+zFwWDeWYxZy1y/t1qXdGk37yG+cho4xWffWg9mv/epvnSw6OLh+J8hvvb4+WnW//uLZYtBf+plrX35q76Kf/Qfbj81uAICjtvvKFx+7++AsKTPIvIdv3RveWdszXXsTfvml32TVdw7PzhaByIaUHru6/cWb099YLi76wX+w/TjB8Mg4fv7J7XduH/zKH74TGbMqgr9zPDyY3Z+Upbcmi86WK2/AWtqfjP6Vr9wyvjhcFAio8Im+Hn5sYLiKeCu7v/PLr8bI3uDRfI1kVqs1lR4AFosWEQTUWWIDW775c1++fuPK1v/rd+Z/+Ea+vrsTKYm645NPZAn0xyJ8G1XlZ564+rmbj6dh/tsv35svVpZg0XbkrHcODGYWFUVUY03hzMFW87Off+xnvvTMr37r+OXX70keqqKcTmm+yA+OT+8dHj1x/fLzbx3NVp+gw+oTCkNZlreuXi8t9cP6L3/h2bbGftDDo7O7d49Oz9Yhpch5yImsMUSIJMJl4Zyz47p87ObVvcuXotrVbFlY4BxAcd11pqS6LruzxfXtsXL4vXsPXnnlNKZPBHPpkwjD/rR+6snHm2acV4OWOvVWRZZdbId+tR66LoUQWCTlHJgFAEERZTqqt7a26qosmorUFIb2d6c7OxNDtA7xnXtHxgAASs4pDHWVjWue/MwjX3/+7V/9x7+vFx1YfOLuhrouP/PUk1nk1TfeSCqjsjohKr33xlhyo4ZiXCN5MoRoY0iCSobq0pVlUdeN9z4x70zHjz9yrW5KBUAi7MJujIDY9v3+/vW/+Bd/6Zvfeu5r/+x33nr7+Jf+lZ+/8/bilZdfvdi3/mTthp/6qZ/8mZ/+zPZkX9S++cZbv/Lrvzat65IMkWlKN27qk/lyvliJqrOOjGEW7533ZjwZAaKzXhFD5Cu7k89+5ol2SEPfbe1sGV88ODke+jikYFSu33z8Z/7kn7m0d/n1116OZvXqc3f/k//g/3b3aL7sLizv9EnZDU9euXFtb++pZx8fjZqQxVD3rRee8wggWazxxkwm4+VqHWLyZZEie+eLolSDhELksoD3znrfDUPh6GBvogrGkC+Kg6tXo+Qg0vXd5x577M6bbz7//Le+9ge/b8HvTLdtM4rD6gtPP/HEjfzSvbdO5tmvzmxV3V+vhX90J9XFw3Dl6rXJuHns0oFR/e3f/t1qNOq7GAfuc9o/uLRd+bP50hparLt+iM7bCg3bbIiKqtje3Zotl9Z7VfHeWm/zmseNu3z1MgCE9Wq8vZsVFNR60tkwMfiLf+EX937393/tn/6GQe27hUtLckankyGe3bh6+cpjO/b2axK7vccv3b93ulrHfv2jKNj9qGGYNu7WI/uk3mi1NSqgwJ3rn+qXp8vZcc6ytb0/3iolye27J3/xF//c3/gf//W/9X/5d//hL//uqLI5xbJ0o6qqymq1Xu1Mp8shobNgDRJacmjtfLkw1jhnRWS5WoSsDeF4Og1xuH/v3nyx+OVf/a0vhvC5zz91/eYjv/2bv/7g7oO6qaumkqzOQM552Q7vYBUpY4BLe9tPP7n/zRdfmJ2s4WOO/n5EdwM53N2uv/j0wRNXr5d7W+t5Opvltl20IQag2Pe70ylam1KenZ2RLf/a3/jXPv8TN3/tV371d3/jD965c6+oR//mv/E/+Tv/0f/T+FHOuQ28NaktmWxsHwMwC+sQgnI+uLQ3bqpPP/Vk161DypnZevril3/q5edefOnlFyej8ex0MS6LT3/6ma3LN7/53O8t57OmadpuuHqwu5yvfu8bzw1Drmo/my2B1Rtpysn9dP/wnVm3ZuGPq2XrR7Qbbj2y82f/1Bcw6KLF158/Wiy7dd+LKCAyC4Iu8mJrd1tZL1++/q/+a/9q3y//d//r/20IsJivmPPf+Nf/rZ/9c3/u7/9n//EfvvSGKv3L/52/+sbzf/j2ncPtnWnR+J/88k+n1L70/Cu+8GjIlu6Zz/3E7/zmb7/19p0s8uDu4f72/pe+8OU7t++tV8vr1y/P1923Xntxeu/upetXlvP5crn6zGefvXXtyq/82m9tT7f3n5g6b+LQL+arddeeHJ4dlPX2Lb9c9G/cmeWPB4kfBQyXdm4+tj1d3IsPTrujs3lIsR0SIdTeV1VdFYQgfduXQ3/lysHu5av/xd/9/778yuvXbl1xq25+uvy5P/9X/vi/+Mf/V//Ov/nq2/cu7+/5avpzP/dVl+cn83XMOS7SYhG395quX6VcMcvZiVZ19eijt1556SXrq8sHO//kH/96jPInf+HP/OO///feePPedHva1KMM8urLr2TVBw+ORZ4jUOX02OM3rEFyMG0ui/DRySkCDl0f+/7KXtVKvnv7Y4m9P3YYrlyd/uRT1zXF12+fPJitlEUQKu8q75z3McbVOhAaAJ4CLherB4fP+dJNd6bL5Sq07a3HHv3zf/ZP/u//N//WS6+8UDbl7Gz+C3/lFyoP3/rmi9dvXh6Px5V1k/G4KPHg0uXVqh2Nqz7E45PZZz7z7G/9+m+HzM32zuVL5tWXX8yuvHrzsdt3f5Mc7ezslqUrCh+GYK7ad27fEZFrV69UtUciZQEyR8dnkuGJR2+8deedGDMaurU9nh21Xcgf+Sp9vPWG/Wn9uccva1o9mC1n60CIuzvTW9cuXd7bbZoGQZuqvLS3N2rKqihKawtbqoI3bns6uXKwX9XjP/bHv/y3/+P/aD4/uXnrkXEznkwnf+ZP/6n/4j/9+0PSyXh85dpVRW2XC2dc33fWF+Tc7v72f/63/w4Zu723lzkdHh4uVv3OwcH67PDS/sHjjz326ScfL7xFgKZpxqPJqKlvXr9cVtWly5fKqnLOjSeTnb29uqpn8+Vy2Y/r6WO3LpfeO9fcurX1cVynH+NuGNH2lb26C3L/ZJaAmqLY2douC98NQ2lsZN7dmU7GYwswnozv3T8cuuF0dsagnEsAc3JyVlblW7df807Ho/FisbKGPvWZTy/np8+/8sa161d2drcLb0MIs3g06RrvC1HUHFfLAQz8+q/8xnR7+/DksIhF23ZHD44uHWy9+tK3DEFOAZGGmEZl4y1d2t+2AFRaY43HYr1aGbIh5qvXru/u7Lz5xusci+tXpm+RHh7NL+HocNqdLT7iQO/jgsGCvXK5Zk1v35uDcZNJsz0ZGSQA2NmaoMKtxx9t18srlw+uHOySMUcnZ7P1DJVHdU3AmFPVjJ0zy9NlUXoy9ur1K4nlxq393/mNf7h/aatdrjkzqipr7ELuQ9MUCBaRnDWL9XIIw/bu5f3tB+7qlZz47PTk5Gw1GY+9JYvGWNOuuzatlODK5HI5LnMUES6cPx3C6dnyiSeeTEPc3d9TTm++8dbZsn/iiUdU3zw+ksdvHcy++fZHW8D4uA6lZ2/s37hUkvEZTTOqS+dyStbi9vZ4e2s8mVQxxGeeeWZrXO4e7P/eHzz3+ttvD2lAS64waIwt63Hl66omsqBmPJ0Y50pfHN07ylkP9vbGk5FyFs5KftLUachADtEQofVuPBr1qeuGpQJwypb06v7+dDQe+t4Xnqz1zh/sbxtnOPG665uyziFai8PQjsY7N2/e+vSnHv/000+o8O72zpNP3uzWw6Ltr+xvOUOT0m5f+YjbVT6W3TDZGl1/bHR02neMZeG9sUPX+em4qksEMcZ6C5PpaGtreu/Nw7/39//J4YMTZxwzl1VFZMajkYDmnEvvS1+Q9X03+MISGFs0BggEjfNnpwsWJLJawbJb725tnZ3NY87rsw5UiKFd9VmUU7SCA4hzbmt7SgjWUN14Z1xd1qdni8VsgYZOZ/Py3mFdNQcHe098+nFny71mtLt38MYr3xzC8PiTN197+dXHrh1c25u8dbu9OpquPKX4kR1NH8tu+Omf/OyoGp8uQtv3qgqovnBVWaBijtlgnozrOKydxW+98ObdO3cV2Bp3cLDfeEcEWVhYnXXCSECFL+pRUxYTMbZv+xgHBpDEgq6uRtdv7l2/dmlne3x4ctqGQRU169Zo0sc4Pztr6sY5M6QEiMBija3qerZYHs3mq74X66qmbkY1AaQU798/IkPOY91UvvTWu3q8denKI2VZlkVx+dKVN955cLC/b4wbGXtjlz7CtfvoYXDO1NoeHi9CUgRExL7vCu+HYRj6LqeUhshDjoF/5zd/K6U0HjWjpipLVxXeVRVaLyqi0TmHxtjSRGaE5B2OKm+AhzyEITpnptO6adx4MiGFu++8c/f2/RRluVgaoyw5pjDZ2aprH4bsywJJjXd15QAQjawWq8V8dXx8VI8aRKjH1e7BTlW66WQ8Hm+xMJKQMYg83ZoW3hv0k0ldFVVS2Z2OrUJp3Ojgyke1aB/9ofTFa9cVuBs4SUYyBjDG1FSubfsYjVBeLQUAFfTN24coQM4a6ySmdd8xi/cFe1MYz8LOoDJVY1sXNYB6U0oCZ03WSFWzXC6v3ThIQ4wpL7ohDnE9Xxsn43FjC3d5fGVrMmr7lgiIICUQJwawLIpYTVR7tCbF4fTsxHvfjEaclWMsvbt+85qIEAAAhxBUZGtn68G9B6tlNx2XBjK4ukusCpUzy49o0T5qGBC9taez1cmyd9bFzCIMamKfSTH2nTrf9UPXx2XbL7vemcIXMgwByDhlAirGzpdlM9pyllKMvnKOwCr0mVVkPK3HdXPv6EFRVNfqioN4b2PWEEOUKP3ykUvXx9Ot/Z2tpnQhxb7v16uV8xWicmRLZnfHhRC3t6bCyVGjAKcnZ+PxaGu6dfTgwfPPPf/UZ36CjOaU2uWccxIWY4r5bM4xOGMXsyVyKI2N2OfFR6bi9xHD8OS0hAmv2tAO0Ze1U045j5tqtm5LZ2JMPktM8XS+jjkjENOQOClo3dSQYdSUzhlrDKLJeaib6TB0oJoze1eocuawHtL1q5defe3tp5994vad+7s7O0Syv7O9OJ2PJw2qcAxt3y2WaTlfWGfLqjEIAFq5IoR4fDwrq8YA7O8dqOacQo5hdnq6NR0hpBz6t1596bGnH08RNOcUIgC88K3nvYUobtWu131glklTzrp5WVpYfTQR9UcJA5G5tjcC0WWbVI23hmwRmQEk50yu7IdhsUpZOAmoYl3XIJpictYUxluHZWGNQUBMKRIx52zQAhQxBGeZs4YwTCZb9x/MrHdnJ6u6qBazxXg6GY/Gt25dUxFLtl12J8ezpi69td16GI3qqvDMiCCNL6w1hTfTaWNIy2pksC7L8sHh0WrdGmu2JpP7d955/Mkn1mf31+seBI5P5ym0V69dfuPVO8vVetrUs35Y9rHyvv/o6kIf5RX96LXd6bUb635YtokQc4pmc80lTZn7mNquX/dx3cahDwgaQxhi5MyF984bRARFYxySs9Y4WwJoWVgFqWtvfQXGIuDh4T0ANWQXi/loNLn16M3RaDzZ2nO+FHCiRlEm0/F4a3ux7Eaj8c7OngGq6sJX1lmajKrxqByPmsl05Lx13u/uTcvCGSRmMWRefO7V5ewBke1X3dG9+8eHD0aj6vDwuOsWqU+Hx4t5OxBhyCmljyy59JHthqsT+5XH/IN+OF6GLEjChhwqeOO7vkOkVrhPKWeJmQmgqmph9kUJhEiUUiZCAB2GzrkyhWAKi7Y0SNYXzmBV2NKZlEzXtd6pIR9jh0YRtSgMS1jM54hAqM6IEXGgZVkc7O+UhbWT3b5P1tSo2XszGo+Luip9OYQeVZ2x3leO0vxEBcU7euf1t69cv+Y8zmbzuF6dhbxer4uyQINGiRRYRMFJ/oTBsD2yX332Uqeje2fzZR9HTSOi1vuYkzU2ZSkcxpDCkJiZVYu6EmFVEWEELRzllIx1IoBIhKrCCpYMEkFZGgtIYETSqGqqm9UwdDny3t7+0Pc7O5Nh4BQzcyags5OTRx97xIApC/+pTz/e1M4QIlFd15YsZ64aj8aUvvKFE8ip7/sujZtiebquS8PCq7a//faD0ahazFfHp8sU25wX49H47GRxNls3pV32QxZFRZGP7FD6CGDYGfkvP74lprh72h7OW+MKY+yocKoIaEVERZkls2ZWEXDeWmtzysYQKKsQs4KyMSaFOG5KkGSMARVLYAGUoaitMgCAJSyL+srl/ddff/vSwZWzxVxVrFEVTjHnlCbTERAeHOxdu3rJGBIRY0yK0VrTVD5nrptaEJ11AICsxvl+uZCcH9w/KUq3XLbOmVffeltFFsvFyaxFELLYHp2Erk+cZstBRACAEBE+shLQh4VhuuN/5tP7NZb3Z+H2LGSF0jtDpm4a4aSqLILY56zDkFgEEQBAVXNOqs47EpSu7721iDlg6NoOVL0l61waoq9Kh8jMlbcKtqqLZrI12Wqa0bjt+OqVg9//vd+/eeu6IbduW86yvT0tvb/16M2mKkAARACBnUfQ0agRVecLckZzFhERUVVCQE1VZdOQVBgEj47njuy6G2IIKQlZdc6vl/0Qemc9oEEiJAPkPqou6w8Fw/42/vwXsW/l9my4N+/6pM5Yi7i3s114N6q2CkdtHw72d5bL5Xy5WtzpEDBlqQCzSOLoC6/AChiYVZNB6IdkyYpF74O3BSsP/dqbWpWdM4V3o6YCxYODgwdH86Yp1qvVN77+QlGMc8pVVcaQtrfGO1vbRCQiKJxT76yvqxpQs2QB8IjofD+0RVXFMEhOObMICGi77pbLbrZsU0wiCmSEeXtr3K67RdshoCMBBGNMVszykZUePjgMu1v2T/10BdnfO8OTNiZAQogxXL1yyXvc2xlPRuMb13fnZ6vFcj0uHZApTxdd2wtrZhFRABUR591qtSrLUiAjiiGDAFVVxpiGobUWxpMxGQRVaywAxDBsj/fr8Xj+2jvGbj399FO/8su/HuI9QjLGOEeg6H1hDA3DAADeF9YWZIwCO3IikEJARFSrmmMMMaV+uZqfLnvOq/XQh5ByOpn13vuY0ripV6sWUA2qsABYBYNIaKioLK7hI+FdfnAYPvdsKWn3nfth1cfMkrP0QzjY33WGtieTy1cO9nem21vjdrk6OT1TxXXbMWcAFIUhBARQ1bbvp3acUi68ZIV123PWPoZtFEIkg6UvYoyF984AkSUi57z1hapORs2LLz5/7fKlpmn6uHDex5ARcXtn6rwDYUIVRGMM54DkUwyF9yAMhKqQ4sA55T6sZqvDw9MhhNm6b/thSLntwjDEuhYCjDmLgiUiMs7asixZRHNOrEVREa2YPwKprA8CQ+PNzeu7Jo3vrXMXkAFD4iGkqiy9daAynY4uXdq/euXS7PS0Czxbd1VZrvruXDYeIaVsDIIisqxWK0Bw1nrvc0ysULJ1ZvNR27KItjfeFQ6JRTiDiIZhQLSTaT2dbq+7zhZ+veq2t5sUUQSIiNAMsc8xIcIQozFO2y4Jc8zWGV94UE1hWC9Xs9np0dHJ7ftnLPn4dJGyLLq+j2nddvt7uylHQ7Q1bhAxxZAiTyc153wSgiLWTUP25GJgcNb+9I1tHpezRUCiLBAFsoiztiicihwc7F67fn1ra3J4fNivh9ffvlvXZd/H1apDRQAFUFEwQBuXAxGJsOt7IlJVDgGErbHCc4tQGDJEZcnJxGEY0NmiLBDROgqz/s037uzsTmMUY5DQGpOayWSx6pbLs9J7VxTW2nYZi7Ichh6EnXc552HoVSEO/Xq5PDo8vnP3aD5fhCTDkFdD3w2p7drJpN7dGW3vb33+6WdSGl599a2j49PaFVVVphTbkLZHFUB6an/yrTsfQevK+4PBI3768k5flzHmLiRXFIMogwEkY4019srl/cceuwnAt99+R9QMoRNmRHt0fMaJATfnKAFAzowIIsIMqgRAq7atqwaUhxCsdSmTKwaar7IqIoVYZCBw2HZ9ATBbLO8/OFutlqNJubMzvX/vfsjZG9uu1q+/drup60sH+5Z0NJmWdR1TSmHIKQ1Dn1MmFGVezRfHR8cnhydHp0tQ7Pq4Wq+XQ4hZOPP+3t7VqwdPfOrml//YTwEYwF9brztJvL27deed+1uTghgWi6WEj6Y94v3B8Mh+DVbaITZVudQYYw4sfTeMmialdPPG5StXDu68c7dpiu3pLhLcPzzpMx8fH53MZqpCREQooojYVMVytVZUEGBRVTWGUk51VQ1DF2L01oaYVhjUoHUmcQVoBbTv32y7ft3lpGScUU1FYYrKi2iS5LxfLRdf//oLly5d2tupnbk3qkpEZREDoCI5DCzAnGZnZ6ez5dG8JZAHZ4uTxboLAwj1IRrnJ01d1nU9ngrCqB6PxxNyrlv3ypRyvnH58unZYrFuq7I2uGb9sAHEDwsDIX7q6t50ZBNLzKmPNiuwUkypqhtflGXhnIGjB/dKX022xmrwueeef+Ode203pBRzFmOsdYAARVFOR5PFcmmtSVlUEQBEtSnKvh8MGQSMMSLiat0qAKBa6/s+Dkm6GBXR2Mq7wiK7sujW6fbdo+nW1vHRWTOtq6qZzc7Wq7Ou7w8Pm+mkItG6rpraDV1rAGIcACjFNPT9/eP5W3eOFqv1ct31ISpojCmzTEqfVVZdu5jPj47ux3Fcd4Nzdjyq7x8dj0bNzs5kvlh4Z03pSkdt/FHBcGXHbo19ELXOFq44XXUJyBHVZems9c46pG7djcfNeGe8bMPv/t5vnh7P234QVQBFBOetCBtrWXPiMN5q2Gi/7sKQAZEZ+n6wzq5Wq6YZpThk5hBtG+Ko8H2IRHiQ8mK12trecU6glrqpEXC9Xl65srdarPJW07XDfLEia6tRMfQiwn2Iaej7GO/cWTmLw7pLOQ0hr9uORR4cnc1Wa1bphyAKIaack/OODGWWMKR21R7eP9Vk16tVU9dU+KOTk8dvXM1ZCu/rqlpmNcYCfNjk0g8Fw2cbqrcnWTXlzOCqumzArLpojTXO5JRUeLQ1uXHzsrfm5dfeuXPnMHFSo8aS5qQAvihCjHVdGWOtNcbZwrvdra05gGoXIyNqyskXHghTzq4our4HQCLTdkGRyGLZlpPxCABYAtlSWAsLj9y6vpzPzo7Pdna3r133R0dnBC4OsfB1zIOsA4LkFHLMIUjf9ZxlCEM3DOsunC1Xxpiuj0kEFERBkcgQEYUh5BiHkO7eubu9vVc4GjWlQer6frlqm6Zy3llLhuDGjWvPv/Jhx2n9YBgKh/VBo0Rn6w6NJwBH9tr1vbfeuR9CyIJ7e9vXr10yCF0//PMXXz85PiuKQoBVoSh8UfiYs4jmnHPKdVXXVaWIw9DlzN77umHmTkWBsOs774sYozWlJSMizBmtG2K0YtbrtXd2sZiNx2NNMNoe7e3tA5qTs/n29iQLPPLYpx99wj249/r8bB36QUXWYRDhsixjDAYAQYehU0BRWK7X1vsYAucEqtY6VuDEiKSizrn1unO+aNfdcnlaTyb9MPiyKmbzk9OzqrSGjHfGkQ5np/ihefc/AAYCuDm24quzZR+EQIVAV3ePhhD3d3cMYd1Uqtp1YTFf3Lt3DICjplktl2StscYYAsTKmMyZsx+GuLdjd3e2jDVtVzjyZ/N5N8THbt2IMd25f0SEiJt09+C9UxFhiTx4KEElxLBarRXEGUvbuVufvjY/Hk32AIyA7OzutwOT8qOPPbremb3x2u2ua0MMwlmEh76vy3I+WyvAEIf5qo2JwZCIFL7wqkiUhSGBqoowgKpot17lpMeHs52dCbMSQlV7OcbZfD2uK18U6FxpPoL06A/4iem4qkZ2uU7s6mnTHJ/NHLEv/GK+zEnK0r391tsiWTUTWUJjjE2K5KwIaBYWQSAiquu6KCrmXI9G3nnnCKScLVYsfPVg9/r1S88//3pV+hhjGEJVF3VZOWf6fkg5H+zvGLJISGicd+NRZR3O5/P1nXZ/b3d/Z3s5n99+537XDvuXelA6OezOTuZF4ZHUO1LyJ2fzlNNi0VpDRCal7Kydbk27YbBkM2fOnFLOKSGgqqpCCHFna3J6PLt09drp6Xzc1DGGMU2d81eu7MxmS2fBW2eJ1JuPdzeMS391dxQ1rVLKCcgYQBQVQKugi9Xi+CQSgCqrakoDsyCg9UVZliFGVY2RmXl3e9tb22yNqrpUYTLqC2etGYaYYnrqmcffefs+EFpnyVBKWUSEM3rHIpk5xry7u5XiYL1XwDAAGkmx9W505/ZRZBHl+WJ5dro6PJo1dXHt2tW6GZdVAcq721gX/lYMzXjSdX27WIYh3Lt/1CfuQ7LG9P2wyS3KIJvLARRVNQzBegopF4U7OT45PLonCMI5pYxkXeHR+qZRMoasqUfVev2hJJu+LwwIeLBXIaYYJWRtu3UIsaxrSzanFHMuy0oVhFlYuz6oAigxc8whM0+nW2dnp9evXfHeOeeZ83K+rMtib2/HIiBJsz0WkenW2JBpQyhK36575woAaeraex9jVgDvfNsNTz9z6eWXXxpbS4xdvxYQb+3OXgOk77z51mg8JUFFlZyb5mB7Z98YAM6OiDmr5HrUqKgf108/+UjXdkVZvvrG223LYYgiSkjCKaVkyCZOopw5h5RAQJgXqyUgtG2sqgLJFGU1DAMAJkBflrNVZ6y5tHdpvX7rY4HBWrKIKUlIkjMX3m18g6qqYhjKsghhUADrLWZESKyMAICoCACwmM/GdXOwv3t0PBtCuzUdPfb49a3J9FOffmp7d7frFjG0o7oeTXde/OYLEvJy0VlvOSdrXFlUKceY4qb4o6Bvvf0Gog5DL9akZJAIxYcge3v7qjCfL9HagnA0Hl2+fDnE5Kyx5JA0h0xIOeUQwu72lih0XTw9PUsxDzGsurYuSwBIMRqLAqQJWFGZU86zxXp/d2to+93d3WHo67JcrZdkTAgJCM/O5iEMxnsYQl4cfxgM/igYnIWkPAy87CIDVpVHxMKVdVGM6wIJu9adns3B0MGlA8Kzo6MTaw2AgmhOCQDH08mLL78OhONRk7M4665dO9jfr6Zb5WOP3iq96cPiN3/j90bT6b/+N//q4b1Xfu/3vyEZXnrlDVcUfehiis4VSCQqq7Y3BoGFwABwZmQj1hky+NgTj7zwrRdSIhHe3d0ajb1zhSoMXTjrBke264eyNL4sF4vlbLa4e+/+YtkqgPcOEdthQADOYoxNnAgFQURNSqnvutGNK23fd11flD6k2A+hbkbGQgm2jWnoo4o6VzSjEmYfqmH0+8LgE42oWcE8Z0CLgAgAhrCqfFE6UW1Go3XbhpxiiH3XIaKIgAKAApiqrpbLVdd3TVMRUlWV43H98qtvPvf8a13X/tRPffHK1Uve0De/8cJ/76/99f/RX/8f/gf/9//jP/pHv3HtymVjDBGSsaoaY2iaJoSQMwsjOqsECowgiNYYqkt3eX/39nh8cjrzhW1GI2dtXRWTyTSF4ezsNCYNnELMw5BC14Yunp3Mc5bMOefsfdEOXQoRiQCAEFSURFU1Zx5iXq7WtnCKQgBhSFXdABhf1quzeVG6qvIK4iwYMx3N03r1wTl83xeGlfKq74UBEY0lZq7K0jmq6qooXYxhOtlaLlZ37j2YL+b9EBFhk5ZABFVFNG3bEprQxwfrE+vs/v7uL/75v7S7t/XNb37j5W+9ePvt2+Npvb0z/me/+Zs//6e+0q+765f37z24H1MXzgY0CADMnHK2xiorWWLOIQGShhjrwnvD43FJCHVdFt4ZQ0PfxxgLV3SrtTO6Paq7IXKkVuRstoz90K6HmBhQkQxtqsmZp5PJEELXD0ZBFUQBGVS0H2Lbh4PRaL1al0VlDEpOzpH3vhnXy8Vq1FRXDnbeuX3//tkyxfCBMYA/gqckIqd9m5MQAQiAqjE4GtdF6Uaj2nuPBJPpqGlqzvJuynrzbyTsurWoqGhZlp/77BOPXj/40hef/Ut/+Rd/4c/+4l/7a/8DV/pf/adfe+uNO9euX3rlpef+5t/8t+/eP0k5v/r6bW99ypmInHPGUEpRQclgTDHnHOKQYgQEZs5ZQ0gxcT2qq8pttmPfx7brl6tF3w/LZTcMwRiI3WARESmlAYiYswirYs6JmUfjmoiYuY1BAURBFZg5xdh3AyESUU7RFj7FKJKJUEDbrt3d37n1yM3EOcc8mXwoKbk/ymE1hDkrInHO1lJOTERNXTnnODER1nVVVyUKApqh72KIRGStEVFmKQpXl9VX/8SX7t2+/+Deye/+1h/Uo//Pk08+eny0unP3tBnXs8X68Ojk0sH0W88/Pzt7MPTh0sG+dxZwaQ3mZEVBmAEghMEXRYzRkCFvhFVQQojHp0s0JaEaZ5E0dCnUqe9n46bqu2CJYowIul51ZCSGCGqYE2fNSdZtJ6JFWZyczlJMqpB1c6SqQGLxMaauDzEO1bgJiUdAmfNiMbty5TLnioybbu2NxuViPRBZWzcfDwwILEooLIiIiCalFIYwDAFQjbUxBOeoLMuu7Ya+B0BAFObxzk7ftgMPVVmOJ5PXXrv9+Z/8wv17b1V1dff2O975F1+5/+D+XQJlAaTy8cef2D24cXpy/2tf+2ZVls5aSzSdTgEpLZacNaaoIgqAQClFY8qUcs6yWC0R6MyetauVQTw+nXlX1OMK0axWMm5GbbdC5NnZqihpvUrOW1MQZ0kss8V6k+nClPj85N0E8AAqAKSqmfNitV4sO1t4Y0ERjXOL5XKISRkKD9NpuZjPUNE5u3jwzscCgyqsu1x7QtCisEVhCWC5XDR1JdrUo7pbd5u+ydHWODIPfUwxiUKK0XkbI7RtW1bVfJH/wT/4h1vb452t6dl8/twLrxXV9ld/9k/GkLa2tksPe/s7aMzf+lv/0Y1rV6uyOD09Y4AuHE8m46apl7xSUQCIIVrnVJmsMQTM2rcBZUXGxhTRUFkVIhpDMkYl9CiREw9913fJlcZaFSQWXi5W666v6gIUEvOGnAaEZBAfxsJEhACgMoSwXLZl5Xcv7fchNKNxu16fnpwc7O1noaPDB6OmeOLRqy+8+taksEP/wQlkf9ShJAIpQeFFUsLCFVWVE5+ezcgY5xwScmbn0CfbVPV8tlBVIhqGUNUVkhXV+XzejJrRaFQX9aWD7ccfv3l4dPrbv/N1b4uskmIE1Z/8/GceeeTylUv70+lIWJqmnm6NzuaLoeutcYTUx64oCmbZMFwr5w0ZAEUU64hF+iHGyFXpESCEHgE8kYqiKigp5MxSFtXxyeL+4ZkCTre3QGXYJFYBREVV8aFwhYhOCKMBRBTO89V6vDUehi5LDn23vbNzfHR8+86dYYhl2Vy7fmW1GF594/ZoVJ+tuvhxwAAAScWhIcZhGJz31trVurN2LsJFUUCB43HdrrvxuJ5sjeenCwBIKbrkJltb3XqVU+w7Ncbs7mzt7+8r0nPPvTYejfd3t3b3p2VZCEtRFqPR6Jf+0s+98/bh0fFpSFFFcozjyXQYzl3JnNl5h4p1VYUYtre3rTW2KAHJWsOZV8u1sHClRVkQGWOZ1DprWEUB62bUd+H+4fGoKaz1IhBCIIMcWESEecMb04e0o5izt1ZUVbXvh/nZoizdjcf205DW69XW9tZiNptMqsceu+W929vfbqpqsY6SN87MxwCDCGhEYzEH7bu+aSpnXBjyEtq6ERWtRnXZ1MK8v7PdrjoRQaFh6I01zWjUd22MabVenZ75+/cPv/HNRd+Hpi5c4UdNs7+/fenSpUuXLyHQgwcPLFkkWK3anHPKvFqtC++tMdZ5zknFGAtFUcQwWEu+sM4XRTUyzpGxnLKx1jjrq8Iock6V9VXpYj9MRqOyKLo2bJjFIcSuS4QG4LwcK5ucKm/cPQCANmk5QmaQLDGG1bptltX85PTS5asr4ft3j4rCbU9GfdSYh6pp9i7tols/OMHF+oOh8EMQ6zvmIEoAQxdXqy7E0LZt3w9d361WK05pOhlZS9tbk8lkLMLOERkchiFnnk6mO9tb+zvbxtpXX7t9dHISU46R27Zv257IVHW9XoeczbOf/SKa8vadQ1Y11jprY4wxBrM5pgFEREFzykRUFM4iVd5VpbfWjcYTRCRrQGnUjJzzW1uTUV0UzhdFUTfeWlThsiystdZZY8hYyjmpiqrklEQF9Nudzll1se5FRBE5534Yluu27/rFYua8z8yz2VkzmQrIYhEWrRRFEXoajdwHFuT5wblyVU2ZbYkExCENoMZYRLXWpJDJrLZ3Jk1ZqeLNm9fm82WMbJ2xxpWFqyo/3do3BE1d7G5PM+vpbHHv3vF63c/OlsejUwW9cf3JG4/sjqejJ568+cu//Gvv3L73x7/6ldWqT3nVDYMx5jyLLIqABhSI+m6Y7O+Xhd3ZmRRFoSAKtFwut65PlPPu9lbhYNIUYYhI29biul33MYwmNQKAgve2G/ohZWbp+05ECJC/cwljhqpCZVEgTnm1XN+5fT/E3HehW7eXD3ad9ccna2EmAkPU9zqZ2HtHH5DE90OVLJKIMjbOIiNFkVIyc9d1ZVUtZnND6L0HhLo0zzzz+ND3e3u7k1ETh7BeD0Vhn3rm6b4fhIeD/V1+7Z3F2frK/s5kWi9XLSA99SkZwrrRybVr17e3J/mVuLW1fePWzddfe21YrjhnzswsCuLVFUXRDb2qpBSYGxUlMnvbW9PtySjXVVUYYwTFlpWSNx6GxZnLuFyuOQNaHgZhkZzSxvkOKRljjTGZRbO8t2ggIt0wTMY1AiEoKjjy3TqczeaOyBcVWnt2dmqsG49KNNY4G06cEcwfqPTww1aOcoSYpDBebaTIgpCJuhCcMW3fi0gzqgjNp564aa05enDS9e3QDk1V+bq0RfGpR25+7be+9vprf/Do44+WdWFKd+XGFWdKAnzjtTtN0+xo3Ns7mE7G1vhuNXviicdeeekVZ12Mw4ZToKAppuVyoUh9CEPfL1ershnHGKwvENQ47IZhnLjrBwJDtQxtF/quF01ZhmEoKq/KKjDEuO565733ZeZN2l4AzCZv9p5XZpN5sj0djSchhPlqnc5my/X6+uXL8/ni9t17e7tbk3EjzJbIe2vIIxHIByHx/dAFPNVek4LUzkTJPrIAKiIqLuYrHmVfuPGoKIuqmYxOzxaSwBbl9GDn8SeeeOKJx6x1X/kTP/NP/+k/e+6FV4dheOudO6+98ublK5dvXL1MHO4/OPxv/yv/ra3tpm5qV9iXX3nz6Wd+YjZfOEcKAHpuIpqyGIs55RhjDLHrQuF917Vd3yEa2/jFYj6djs66VlIDKl3XhyGJwczsVFNMKee263PicVMP/cCsG9ogIuB3nksMQGN3Nl+fnq2m25PC29VyHVN+/Z07ArJ7sDuqm63tcd+2k61JXTWuOiMjH8xXen911EGYSvAKKZIMgwMRAEVar/uqrOqyRKMI4H05DINKXiyWy8W8bfumofl8NjubP3hwcnp25p1zzq9ff/PunQdF5Z996tF+iHvGVnVFBOvV4vD4ZDrdmi9Oi7KgjJBxk/UUVQewXq8r5wvfrxczArHWqpowBINUODOfLZ0BFLbW5iztMFhnEicTaIgpsSxWXemdcy4zs2QQm00mMsYU+b3j1RUaW45GlpG8d10IWZkMjJsmJUbhsnKWgIVe+PoLmeNksv+zX7n5+19/4Xj+vkUc3ncLYjfjrkOImjMMfWpXq7brcuaz07PVqm1XHeeAKggmhDy0w93bd+/eeafvemaZTkZNWbCI9fQzP/35yWj84MG91K2vXNqHnBaz+bOf+clx0+zv7dy/d3d3d0dFrTHeF6q8YeHHkEQwDqntu7ZP7Xp1cnS4XsxBxTubOa/Xfdt2q3V3OpsfHp2cLZZDzou2TZnbLvR9aJerqizL0lsDhffel8YaZy0Ai3wX3YhKX9vKjiaVMZRyZmZhLp311l66+tjP/uxfQjSvv/KaBejWw5X97T/3xWf+hUduvN8lhQ/C6FaIIVsEZzAbb1hBcq8tVtWDB8c5pRhC2wXmrCjrRRuGVBZljHDj5tU/8Se/0tTN5esHf/j1F711/8KXP3Nydjra2lq33cuvv/rM088+9elbf/Zf+rn/5G//vdGono7LqixjiHreI4SIyJxzzpzTMPStsSTsnYl9jyqucKAQYyRCg8DZqGjb94o4hJhyBiRCmEzHzOCMLQsrKitrkUBBCTvn8L2K3c5dXfZXc3pxZ8v3Q+TMnHNdV+jKf+Pf/Ld/6Rd+8fb91xNHa3Hv+tV1Zkfm5v7eV7/wqf/6Gy+/X3/pA5I7OgUneh3TIhs1IJnXXVfEJCm1664ofFl7b4ytaAjh7bfvrbu8WCzrqr71yPWyLlbL7rU33n7m048VZcGZl6v1vTsPnvvW66++8koY0meefeqxJ66N6tH1a/u/8c++1vWDNYZFjEFrbdd3IDpE72xA1BE01qoo9V303iOCtUaYRUUBY8wCygJEpmlKIluWfhhiU1dl7fsuUR/rshpCIkP0XXNb9d5ifmqdX7cdGaMCCqAKVy8dPP3Eo//Z3/tbR7OTvf0tVk2im5xUWdEzTzb7O/7o9P01Y31wjk0SOOulKlzHDCrElESLwq7b9elptN6VhS8rb40jAJXh/t07CnrlYHd7a/TVP/aTihCz/OIv/MnRqFmt1m+9eUcRf+anP183zdtvP1jM+k996tGckwgYY53lTbcac/ZFYQwSIiHRhlDvbBySsgizL533PuVMhvquC5yZdTJpRk2jqmTQGGcMbW+PATANqa7Ktu0MGUP0XZOYVMEQIigzA2I/9IYMEhVNff+f/xffePGNm089VdUlkN3Z2uaUh/WSQ5/ncw7vuyHuQ1GdFgIx5wopZsnKpArduvQlK2rkvlvn4+ycKaui63eMMb6weztTVSRLwlQVeLA3Lqu6rIqdnd2UUwzdSy++dHQyu3v75NLlLVGtypK7jqwhYVVCBeE8biY5JyW0hsbj0dUr+7P5/Gy+ttbubu/GlFLOs/mSkKbjZjQZhxDHoyZxBsS+68fjxqDth1AWdRLOy9R2rTAX3g0mviu2aq0lazlLynnIKTOXhUdEAl2t1n66pcgpBGetMWwtorXr2Xw1Xym+7+TSh2Wc9YkZwVsUZAQkwBBSSJmQrLO2MCKwaofZ/O2iKLYnI1I6OTxlUGYZ+pBiSFnruijLouuG07NFznLt6qWf+9NfPT06e+ml15qm6cOQmRUUAI2xxpqyLLYneyK5G4bjsxkSloV31hmywrxat6t2VRb11au7VV3mzMtlWzUFBhAWMqYZjRfzhS+KIQ0ppdPFOufsrBdVV8WwPi9nEiIBKJGoemM/86kn3rp7T0VA9PXbx6mpUE0YUkqRjSmKcn4287sHt3bq0n4d4P0xBD4C4l9UjgnqEV6aYDeXaNRbCwDMLFEA1JWFL0d9PxyeLZdtNxo3opiZS++mk4loXrXB2GJnd/eJJx/b3hnXTbVeDfcPj87ms7oZkTEq5wkfIiqrglCLojBYXLl00PXDgwcnTV1WTRVzPDo5GU/rm498ajIeA4Aqr1ft/t5O4kwxZWFrbAhD1ZRDH1KMq1U/9ENZVgDQLxfO0HtryogGlJ2xX/0XPieKb9++6+sixni87qY72znFxK4uK2e18s6S+8Iv/Y03Xnn+wfz/8X7X8CMTa+jW+nabJoYSkQBbawtn0BIoDTGp6LguM/PB3v7Bwe6V63sp5hDSZDr60pc+tzWd3L93cnx80nddt2pXy/b4dPH6G28ZaxCxKIoN5wMRFJQAEE1MuS5c4f3B/s7lg+0HJwsAEOFLl/b2Lu+ORvXQxw1yqkRkUIQIiUiV67peLZegnLJ0XU+0uWjUqQ3Dt1HYZBUVYDpuDrYnz7/2FiBaoqFvg5kIMxpKMbbrZbO7E4GNtb7eMZNbH2Da30epIMMKsywAgoiegYQUMqD1JRFhu+wE+FAO+659cP+wHjUH+zunD87+y7/3K2XlSl8gQohZld96687pbJFjIrLdMIjkDb8XkYQ5M4cUhtB616SUUkqj8Xjax9li6Qs3mUyAYblYqwAgMaeYMhqTYmThEFPmvO6TAOSsXR/O5gvnPCKAImcGMfCQkbo7xgSKqDEnZe263lgLCKKyXq73Lu8LKKsa64gwxOiKspiM++XRB1i6j0XyUFUD58DZIFWl0WGEtMycrbMpxvliOZmO56vV/ftHO9tjRAo5jZq6qgoReXA467s+DoO1nggB4dxTBBRVFN4Q9FPiEHIfBtdbIopZ2q53ySFhZhEVBGDOqsKcY4yZJTOqIqoAR84SIp+cnmxSeyJy89Y1ULO+cwpwfsGu21CURgWEtSn86WwBKtbaIcYYEyACIAuXZZWCdG072d7Pi9sv/95//QFW7ONVJWaVdR/6yArEKilHFnYFlZV75NGrN29d8UW5f7DzyPUr1w52CsW3X33n8P4DFa3qBkBAhUNQUUSj8FCnIrOKcJYc0xBSjAkA0VAWNd6mnEQ2ZRxOKYWQADAMvZxbHkJar7vMvGrbxFqWJaiK8l/9q3/lf/m/+HdKR/CwkS0qsoCoNHX5lX/pLzbT3ZyzAeWUgoIwxpjjEJumFND1ut07uHLy4PaOrbbL+v0u1I9AKl0Sn+XufKsjcpYQ4uzkrGWWsqhPj1s/nC67oQ25qZw3uBGzcGWRODOzKquKqoIigAGizCyqMUvog45Gbdc7a8qqMsaGmBRQFRBUQVOK1tkN55xzAoCQUl6trcG+6611yplFJpPtp57+4m//5j9mHN59bmOdIoLCct0aZ6w1qiBgvPeiwiqckois2269WPVDmG5NT1v98p/+udH/4T+cDe8vrfQjGhzw7igpVe372PfvBjhzQnh86jvWTnAfdDpt7s5a7z0aLMoSEEMImRkBVAEUVAGRUgrWGAEdQu8KFyOHGAHw/LhQRUDOzKrIogyIBADL1bobhsIXIWZmAZCYEuf8qac+ff/B3f/r/+nf79pv8+Nz5rL0kGm97ufzUyABBGfNEOI2GWbJKccUY5KYUx8Cp+5k1n/pK3/ejadwfPa+1ufih8qIwjvrqIoM2Kf8xKieB1j3nWUiNGRMSolZDKGiMqh9yGNBAGHuQ8R2EGTVjOjadlBQzmytyzkjIqMys2aOIYWQui6CAufMgjmxArDqZz7z2X/0X/1nKIvSQv9ufi+JZEWEEOLZ2WnhHCAiYT8kAF2vW+MgtPn0ZN4tFynr/ft39q/fc2Q2kL8vu/gJuRtmiggRwknCxbJ9+sZlTiyiKaUU04ac8W6peENbAiIGENCUcwwDi5RlhUSc8zDEnJlFNjWEnFOMsev6Vdet206YwxAJHBGpMIqOqnJ3q/793/09dKW+R+O2TRwTq0hK6ej4xJAhQFAwBKt1awjbdej6drFa9CFaguUqhpDpIYn0fdknAAZEiwSkhCoKb54sH7t25dKlSzHllFKIgYjMJuumqpt/WAGQlVkhZg4ppsjGGGMMc87naVIV5pxYRWPIfZfW634IKWcWAOOIM2/6qy7tH7z+0kuni+UgfkjfdvlFNSVmkax89/5RZgZVFSYAzrpctqv1erFYLZdtCJGM/eYf/MF0NJrNZqvV6v0uwsXDYAmMoU2NDRFnSe/dP/7iT36BRViUmZnZWDr/wjaXL4IiAkAWyQpKRlX6vs85ASAoaGYVBkAVVdG+CznHcxeLs3Mu5xxTAADO8pnPfeaNt+545wtPzn7XgiAgqOpsua5HI1XJoknReZ9SGvrQtq2IKqIjWrbd8fHRv/U//ZuHh4fvdxEuHoYs0Kfz+q2CCuHzr7xxdX9/Mp7oeTMaEIF1HsmoiqjElELMmTnEJAzCmjKnyDkLZ86Js2qKzDkL89AFUWbhnNmQqeoaAULKzJqZd3a3Hn/s0ZdffrkovHFaFN+R7M468r4yBmez5XQ6BQBQBASWnJjXq3Y2WxFi4eyQkgL8yj/+B6+98dwHWISLh0FUNznNjaIGGTpqu9XJ8ec++zmR7Lx1zm0yGWRIFZlFVDkzM6gAp5hzTilvundDjDnntu2GLqSUlstV24euH7o+MIu1ZjxqlDWnzDlL5i996Quvv/Z6GAISMWPK35GHYF5ba631J8eHfdsq6EPXmVbLNbMIYOFtYU3bdwjy9ede/trXXvwAi3DxMAB8e+yZMUQIasy3Xn75q3/8q3U94pwJ0RhrDRGC8wWLKqAqC7PqphVBOIv3bqNfHGIa+tB3/WLRdsPQ9V2KnGMGAFSQHJkZQawh58zTT33663/w9aqsUVVEy2L63udKqY8pe+cOHzx45eVXjDGZs3BmydZZBADNhbOA1KcECLZxIX4Q9b1PBgwAm4ZkJDSGDJm3T06I8Nmnn1UBInLOOl8YImvJWavCOfMmhsqsKUVmjjFyetjhHHNMeZM9TJxzTsYaUCECZgUQAiSy12/czCkdHh4ZRylnRCL67qychsERhhDvHx0roCoaa8uiElFrnfcWjQFljgkJVid3Pxhf7JMBA26eHYXFGOtLG8PwyssvPf7442VVkjGA4AtXNzURFd4ToopuisMsSoQ5ZwEQlZRTjrGPoQuhDwNnjkNiFULYeFyO0JIlIE7xZ376y2+88WbV1MYAEgBQzsN3PVpIaSNdYIhYNslTKQo7mY5Vc+F8VdiYRJRcMv37C9q+bZ8AGBDMRpdtk4k25KyzRK+/+eru/u6oGZVlaa2x1jrnqqoC1KIokJCFRRRVU8qgAgIiSoCZWVhiHIYYUmZQdRazsneWCBUxM7PyeFw/9ui1Bw/ujevGW4dogKXwBX3neIwhc+JsDQECqDJnAJMzt+tVynnUNNa5rusVYI3awQcUfLt4GGqCjVQGGQLVnBKRGY3Gs9lsdnq6M52U3lvnRNh5j4RlWVhvvXfW2o24BQIQkUVQhSSgSADonUMEJCBjVMgAFUVBhoTZkpaF/YnPfSZnWcwX1qCzDkSz5J29nbIs3/t4IqIixhDCeUMTIogwEaFq4W2KKeSEiPt7nTHf5yV/kF1wMsMAFMYMmywQoTIB0OYKBYRXXnp+OqlNjyoSck45GyI0ZhgG5xwibAQOnXXCrIiqGQAsUSZUAYMmCRNJ4Swg5pxVFVW997u74xvX9t96/fXSGCr84cnMO4sDzs9OvoMxtnlItNYYkU3zvUFEUUIg4+wmuIkpIsr9w14+qLzVBe8GY1AMEiAgEqK1VhWstXVZjcqKDDWjZjqZjMdNVRaO0FpnjC2KciMkuumqjTnJZkq6KmfGzcArRCLjnS2cQ0BHhlQsEQKWRVFa163ak8P7ohBjBBFrzaiqSKWpzXuTEWTMwZWroICkoEqwUUzGonCIiMYMMWbmypXd2n1gTdYLhsFaAkIFVQQlMAY2l4RxtmmapqyNsdOt0XQyKYrC+wJQAYEIkJAQiZBADZEhUuUsmHNmFmbJItYYS0SEgOiIjLFJ2BVOJSLZxXzed910MmqH5IyxBuvSA7miNO/lsgrzvfv3hdAQEZnMrACWDBoERAKKMatCs7dXTXc+8DpcMAxkSPRhnUVAVFVFCRCkKNzWdlOVPoRIFuu6bJqKgDbVCGtMVZaF96pg0Khqyrlw5L331hTWjKqKJfmicNYSATmjCpV1k7oY1fX2pGEGT84iEKqgFEXhnDOOFMqrV6699yHD0CPzZh4RACKhtaQMqpo4g6LxxRtvvPngzu0Pvg4fahU/tHmHGwGpzUWLSIjojFVAInTG1EVRFaVFszWZjJpqPG6scTEm75yzxjtnrSdjVNVbV3pfOgcAYMA6MtalzCI5Z06JFcQa09T1uBkTmqbwviwZtDSUWZuqckQFWUNG9DvcVkQkAVDZcBIQURVVuK6rlFgk/cTNPZGPRyXgR2CFoboom6pWhfNIWlVVDKE1ZABBxVoCUGMNojpryJgQB2sdy0ZCSAwBgXhLhBRTjjkDoAFSzs6g5ATkyqKovPXGOG+LqiwLxykZMk1dMkszrq213hglAksAGPv43vvBqQspqYgqOOe8dQBirbty5cpqvd4eVRNH7eK7A473ZRcHA2JVeREYNaOiLAABCVWVjDHGIGLkhGiEoSwKEUFSVYphAFBjkTmJqGyy1t5lEVFJIpuoLmZmPqeXDV1HgAI4GpX7+zvO+piSK7wSxJS7vuPMzmyiaHRkANUUrqzdu0/a5dCltGlZbOpi1IyGkF3huvUqcm4qs16sSD+URPSFwYCGXFmsu9iFMBnVllCFFRWJkFCUhpCYc9e1OYSu7UtXKzOoHOzvFdagYE6REDwZzeytc86IIABlFZYcM+cshEREy7arSteMxlXhDML2zk5dlQYxhFA6NxnVBJAlGxAgMrjxpvx7HlU225SINiQE5mwQU8o5proeHa5bfv+lnvfaxcEgYjiI8mLRpshVXRMhs5Ah3aTgMhu0BgGNvXppr12vc+adra3SUlmU1jokhE3ZJ3PMmRkQOKaUY+asmSWGqJKrsmTO3ZCts8zaDyGGQVWtNZJzygpgFEAVFalyDhFAQQHsw3CaBbIgIFlnNgoiIOq9Wy9XiPRg3t5ZdyF9KEXci7wbMisARM6rrgfUqipx4wuqGiRnTdt3MSswt20bQg+kzlkichYNgQrEvMlo5JRzCGGIOefMoll1w9921ivqzs5WiDGnhIjeucJbAMwxWWsQmUCNMYRgrQFCZyyhOY/qAQCAFQUAjZKhui5dYclhHPr5cmWdWXf9sPxQQntwsTCoKihsmkdCH4WhrqsNO4wArLUhxphzBlms2xBTZciAKZw3ZpP2xg1rj7NsaNgiSmQUFECJ0FgjqiIAClVZnJ0tATTHBELrVaugfRcESJVKbxMni4igIgKoQEbteYqBUBHVGmOIvHPWWmFZLtbM4oxNKYQPPfLqwmBQhZxFHiokpJy7vs+ZgXA8GTvv1us1p5RSWC7blBKgiQKKmpkNOSTaNJcnzillFokpKQgSAqghypkzSwYhREAsSocI7brf3h5nVUBlliElzpmBy8KBaNrUpjdlD9XS2k1vKIJag865wllDYKxFolXbkjF1XUpK+UPP4bswGApvJuMxvofChEg5cQxpc7JEZkUAUEfEzFXhNOeu7RBUN+N4eCM6AhuZKhZVBdnoX4gaY0E3/MnNVSNFUc7W6wcPTkEzGhpiFsWiKEB1azox1oZhUAVjrCogwvlIAzLOOe8MABpru75T1aZuQME7kzOHGPVDXc8AF5naU1l3nYIqbFLIKszOkTHmwdHR3nS8v70NCn03xBg5i7IY6zSnkLKKEuJmNzAzICCiUVUBYTbGACHnLCAGbCJWFetMTTgM6SStnDd10wCAI1Ay1tJq2fV9jiLOORgigCqQ85YGUhVQW1gDAIZoNJk6h2Xhua6ds/cOD/sQXAHwQdUyNnZhMDBrFzI85FsooKKqSuG9IRwi9zE5Z7NAHxMA5ZScM8YgZ1QFQ0CEOetGYE5YIEYEAEAHSmoAEhEJS+JE5Ffrru+6UdPkjTpc3zNzOwyquQO7aPshDq5wKmrIbgSuzLnSlXoH1lpRIONGTVmWRVX5nIqNEJyIrlYfdnDAxRxKuNH+3RTd3j2UCBCNM7Yu634Yjk7P4hA1c9cHQxhC6rohREbJLDlltsaocM5JmEWyMDOzCOecNpVQVUBEVe3CMKRorHeuFNaYQhcSIqUkfeS27/swjEZN6X0WZskoCgJxiITonR03fm97rIisaq0vy9oVtqzKzBxTAkD90KfShe2Gc030cyAUUYWVUZiziNmbThbr7u7JbNKUWTikbA1xz77wGZCFDUHgSAR8PkXv4Qw2QlW1gAiYOSsBgyroqCpFpO9bIFh0/bQmKFxRFv1qCENsyqYZlcvl+lw9k0hRs+SyKHfHdm9vKkm9c1/+iUdtUbWDWLIxLnPmrBA3JJEPZxfnsCqBfptmqKrvKnOFlMjYwrtluxxiIEIElSyZJeWsIsybLiwTck4sKaYcc0ycRYUzi6SchVmYObNkBgUETMwpswFs22FIKTOLZgIsynI0LjkLIBHApk1aQQXEGUaEyzuTReCirOraPvvZ64/c2o1ZppO6qvyj1y6Xxkwmkw+5GBezG4iMITx38zUjIqhuiHkx5ZIs0ab6CPPFajqZIGBR+nYIHpAffv1IZL2XkFFl18GaYZ0zIhphYwQFDNGGUSrMidVZVCBAUuUU86odhpDI2lFdiWjmLJJTFhUE1ZwF0QDQ7s7O4Sr4qtrf3Zot0+x0uTWp4lBWvozdYndUY7cdwv35h1uQCzqUVFVRAeQ9ZcNzfRLQmHi+XCLS7tbWfLFQFe994W0IfQiBjN0oswEiIjprOSVVHVnqAzCCgKggGU0qkiIqO2OFGZ1lSYnBORs4reYdoqmr4nwWpUpmPudeAiDi3vZECYRM3+Wrl/d3drfRufsPloSrLHx/tT49XXtLLLkdPmwUfTEw6AaGjdt/fjegntdUyFkHCn0Io526rutV322NR8xijAHEnAOzZtXMm3YTSYh3BylMRkMGDSIgoYhmEUS0omSxLNy4robQEwGRW7Q9iCByVZZDCNYYZjZkkLKADP3Q1NXeVlN5s7M9ma91PKl9YZ31OaWQOUdIKXdBRGHRU9f92HpKRAgPo9aHpgjAOamqtRYQwhBExZBddQOzKCALb1jdLBxjyjlvzn0FGBjzRmxSAd4NRlQ3vHwkjDkBIBmyzsUQBICsBQOJOeScRQQUDYUQchaDvD0Z/eTTjw6D7O5OnPPWGER03iAYVXbGqKqxMNmfxA89vvtiYFAAgW/Lqm3cSgAgBBYFgLYfjCFCZObS2D4MKWeD5JEQUFBZWFmEVUS/3QArQqCIdE7rUlUAUVVEQLDOeeetdWezRc58sL/vrYkxijAhOnIOLQjElIchiOJ82b785v0uaQyJBZC8qowa761lzt4AK4vAOdPsw9nFwGCQ/KZr4z2GiJuMRIghcVLRJKwIZVlw5lXfIqIAJN4kL0RUzj2s82K2et2siCCACsu5uiqWhTfGdm2XhUNMoFgUripsWbjS+/FonGJWBCRgzsK8cRbuH5688vaDk7PZbLEQlpwSKF6/dokcGUNkDSERwHLRfVss8YPaxcBQ1iL6XSKDAAAiigiIwJvhWMoGKTM3VbVe9UOIIQQW3tTaNuKp7x2rI7ghIyvQZhcoKBACIYRhYM4587Id9vcmZVnlxGVVrpYdERhncBP8ASTO1lkRAaL5fHX/3uGDo9O26zgnMmiINpNyANU7W3hni3I8rj7kglwMDCECy7dJtwj4bjyHSIYMKCJojpxiDinFnIyxi9U6ibCoij4UGKGNb7MxhoYALaB9yAFkYUUsqzolFsUhJs6RBVWVQUhRVFLMzlo0RhG8s9YYFWVh5y1Zk3KezebLxbIb4tlsNpsvz84W67Y7Plo0TXX1+n5T2f2DJz9Ao9V77WJgkAiogKhwPllq06uLAKgqm+I7EoGqJYuIISYiTOdpirTpOwcF2YhSvgun7lr0BGg2hTMEBcg5L5fzGGM/hPW620xiLOui6/pN3x0zE5GCGkRD5LxrKj8ZTcnYzDmmnJjbIaxWXd93b719//7RiQJcvX7ZeSciqQ9X9jaR3we3C/KUvp1Jgg3/BxFFGACEJTMjKqFJzIqsonbDFiATN91oIue3On7HV5jgrSytIdyEFJu4nEW6bogxhhBSita6mFJKqqoxZmGRc4oOsmQiQ4rjyfiRG5cPdndVsaqrhx2+God0//6JcM5Z93bHmeNivv7cT356vzblh7unL8xTUoWH3OnzDs/z6Ql47pVugihAEACDZpO2Y9ko+sDDDQTvsvIBQARAjG684c31vZHCSpyZU85I6H2RUhbhEHLKWURCjDHllCIhMXOOsW27fuiXq7apyps3Lntj6rK8d3T4p3/287/0l//EdNSEPj64d3jr1q3LB7uXDsbT7aIsfgxhYABBFT1XPn33UBLZ1C8NAFprQGGT9ENrrbHMLKJ8rmwugKC6UUr59i/HrCTgQCwhIaIoiopwCpEIrXOZcwwRgJkZAQyZtgsiqswGyQJs7+0+89nPHR6ezs5OY+b5fJlSvnP/sLAmxNB1abVabu9U+3tb+zuOOf3h175xNJ+lD8rl3thFZViVcCMQ8t4JgijCqsqcnfUiSUENkarq+UFEoKIKqhsgNolVfDgNHABgkDwCRLIkAICiCiybc09EiCiG4JvGGjOkjjkrasrJAAGRgCRmC/DISO8gKUCKse97ItN3XQjVN775+nTarJbdZ5+ZLJft2+88iH0aluseZkP/QXqt3rULS3SrEqrAezKsqowIRBuvXaw1LjGAGjKsG2X/8w5AVX1XvFZU3js0exOvGTjPk2y8KgBQ0BJJlUWQkEAREMkWZGPKOYuooEUCJAqzcPhGGMIQ8v7ezmrdrtdtiHJ8dtp9oy1doYAvvfS6BUWRsvLLZff1V2bf1bv4fu2CMqxYgGbF79DS2Ny2qqqAlowBI6DunDQEREoGJKOq4obCh4SkmPm9rqICRFXMmwhORUGFibAoKyKy1hmknJMlJyrrdgmqFlE4A5zf1k1V9iF3YVCRrh9iGMrCZYZhHVOfDbZb03o9z7UvnOej2fy1t9vhv9ES8X7tglJ7QkLf7WlvRgiJCigC6BDjxhUiBSSMqkSEpJIFDcHDKSSb4sB7bSO7hGgQUEUATVXX1hoyBkFzSlJ4eBj4ccqqkHIkY2JMItKDe3mRXOEoxsViVXpbWFM47Puh7aIvXNsHyNL1/awd5qvwgVtL3msXA4Ngb9EjiD50Xd91PDcZOUI0BjXxJqA7n0C14TURqigRnR9N/43ptCkKg1ELBGCIbOF407wmEIborJXMgkZBY0oWEVFVEA2IqkEy1kZRgwEVUDVGlsyiIggCMATOzGeSRQb+KADY2AUdSgCkvFnF71hEBAQUUTp3/IUQjLXKmQiZdZM+IqJNoUJFWL97nk4GYFASAUTvXUqsuqHUV4ioyiyaRDZYkiUyKJyFDCEikKgSojW2qpyKoGgfshLk86y8xPhhqwvfc0EuwDbhMwKinp9F7/79JjpOytPplrUOAZ21CGpoky1SUEAAa+wGtDHh7ne9xaacJAIKMaQUk7XWOR+G0HfrTb51Q98PMYgAgmFQUE0phRRSiqrijC2sLwtvSIk0seqHuoN/gF1YFI0ACErfmYtRVTmvKAAi/Ys//wvGORVWVWMIYaPwjwrAkgFAhdEo43ecDgwQlRAAWRGgqDwiLReL9WqdeePBMqhu6kLOOUOGhcnYIYU+Dsz8MI4hIlJCNh+aDvaD7GIOJQZwCooKoAS4WXYRMYaACEScsUeHD1jRu4JzVAWDCCAGkVFFWHjTmkJzI9+DuiiqiMYb792Q8hAGADCGdJOZZVGLoiIqBEqkKTKCGGNiTAAAiCKMhIjorR/1bgbvexbA+7ILixs2gx/onNhy/j1vBMOIkDkD0e133twej6xziKQKRIiCmxQHojKLKEj7PUbIRwWrCCI5pJiynoforGo2/ylzLqwvnU8pbsJGzrwRjGARENZ3fWii7mPGAC6y+qa6cZSIiIjcRtANyRCJwHmvzqbivzmpQACAFDY3hAIIYj7/se82X2s1wpQ4p/ie0ARUdTOOdUP1KL3jTcEVAMkU1lnrmLMKCm9gEJGYy4/OJfo+dmG7wdeqgRDROTQGYxJlBQDZRNab71M1i8Imn3HOmCCVBAqkAAryfS7OoQfnmBA3NK7zs/48ZEdRTSnlnEIMk7pGZw2ZlJICEJGykkGOaVNfZckw0fcpuf2+7cLoYszo7UYhDCJryIoA3hlCAlVrN9JK1HZ9jIHM5jBBVQQRVc2iigLyvS9PERhaRTqf0fmQ/7HZDTmnLCKGzCZbzueTcchauyF7xJSzSMrMWTSpvm+xsPdtF7YbclZjpRcQUVD1zhIBASHJOWtOBQDqsuhjjwbhPKMnCKSQBYDFsBqA702LCBlcBZBhMwlqw9cQUWFBBwAaU8zMZMgSqagwIygQ5JBZJDOjKoHQJn/+MdvF7YYMbdwcKWoIJ7U3iFlYgRXRWGutVVXrTNOMeCOT91B8b3NGWUKC79sGiwDA3xbM2pT6VARVVSWlmHPaTMnY1K0BoCpLR6Yoqo0YOIMqyI/mQ724bh+AKAqbm0Al5UyAhXeohCKEtKkNpZSE2QDGmDgrKLIqCKiAM87a75vmV4V1BD2vVm/iOWUFVk1ZYoyFLwyZzS1siDbShspZlAtfIVCKCRQw/yiW6CIVZARASIwCIKQsiGDBEKEIxhQAkFUFobBeWIkk5yysSKAMBmXdepblH/H7ZEBRUc4VwxSAWZhYdNjemZBBzkpEliwhbShogBj6HtEYg8jYDhzjh2Vr/zB2wWIND0sFKKLO2M0ZhYiwIWggoqIxlgitRUMYOW8qPYqq7vSP/nHJwBk25IPzv1GNmckYZSFAVM05bXoLEVAZANBaB8IqYlU0c/5YkxgP7YJhQN1wY75deCAy50lWMg8zHULGbCg0ztpN/z9nlfiDF+i84Vk3w4hFVQFBRIzxG4oNM7Owc36j4+md3Wh3GAABTB90DPf7tYtXF3tYRFMGGFJWBTSExhaFO8+DK6swoTGIhGCsUdWr2zvfNTvye5pRoIcIP4wegPOGhyHKQkCVd0QKqEnYWOucsc4Aalb8cCW192EXfSgBbCiUAhgSi4IiGmMANvPEyDonmZEQEEUBgQwhqd4+Of1hcp7yHndpQ0c7n5OOmFkU1DmLhoiMoXOV0cI5RDT24aDqH4ldsMjbhnkND+ksCmQIvbNEpECAyKLWGmVWESLaXLgsmH+444I3G+IhfWOTuxWWru2NRUVw1jnnjQkAQETeGlCTkhFE/HBqJO/LLvpuANiUWRCRrDXWOGeRLBFZY5EwC7MKodENkUMVASS9jwWizYbT9/TZEVlnmVk3LErOm5ZeVABEY6yKIJr8fUL0j8Mufn4D4KYvZPMHAVQiFBZAABVLKKwsWRRSSkjv9i78sD8voACbwUkZzi9/RMQUExliVlGjeN4AIcKcMhIB/ki/0E/AFQ0gAEiIqtbajR5GUZYsoqyadRN85ZQBkVmVSN0P/s13LSkAKeJmL23olCqgWZhzjin2oYshKZC1VoEAgZAI5OMv9nzbPgkwkKpaZxHJWktEZV2MRrW1NotE3ngrSoQsQmREKP4Qrup7DQFBzYZmqarMMgzhPM2XJWdOMapCWRYbWWQFVjT6Q3hiH5V9EmA4z28LM4gSYlWW1prCu6Jwm+wnC7CId85Zy5rfV11YgUTcw2oRAIAIb3JMzBpTEgXnnfdGRUU3UtAGgNKPyluFC4cBARTEeeucVVVnbQqxaztVEJGqrp11QwhdGADROQ+I8L5DKnEaEHRTX9rQ9xFRVFVUVCbjSVEUxhhjPRkCIGM2V+aPDoeLjxsMgKTcrbtNC6IhAqDVaqUEOXHMiQHKshqNRrJR63n/ke0AgAQGYUO530z3PgdDNMYISMqac0K0y/VaRUCl+sBSz+/fLthTIgJvMD0Mc1PKGzJf33VIGEIgMmVZFkXBzNY5w4L8vpmK55/95g+IgDB0vbVmkzDvuo5zrpuq7ztEYs7WeOts7f2sCz+aHXHx4VtWFAEkIMK+76uyQJVhiESGVQjIEIVhiCkx55glvv8ze0MJICAwKOfBw6apSFKSzDIMvS18irnwThVCGIzBTfLqR2MXCQMhjAwAbFr7AUTPq5LMCJBiIDKgEENkkcyZc46J5YMc2QjGQuac9Fw3zxARMXNKUUS6rqvrpm17zokIUREArUNr8MMrh/0wdrFae5AE5b1NhCDeuw213lqLhAISzqf3pJQiCXsy8L5dSY0xA5I+7ITYZDWMIck8ny9CzBuc02ZKE+eceTyy0/pHtD4XfCiJgkNID2cXWUMIIJsmRN1IMeimAqqIwuqc5Rw+gA8jKpH1YQJLRRmzGGsANQwd6EZ5HVOIhghAjIGYjTEGPuhkjPdlF61YjxvhGBRVUYhZFE1KOWcOIcUhxiGdd8KpIiEQZvkAwx4BYOPovqvSo6oimUUAgBCAJTtnz8e066YmQZX/sA3PP6Rd6G7YsO8AAHGzyKLYD4OxNnLWZBEUDanoxs/cpICMdcgPh9q/b1NAAQVRVFVCkZRUCBRW677wRWYm3PANCMmY95M1+TB2kbsBCXST1nzIjbCIhbUgPKrLce0K51JiACQi5721zhCy5A8wJR5gU+r7jv9xM9I4Z40sbR8QoB/C5teZhYyx1psP1/D8Q9pFwuCA4FxvDwhQFKKILxwSOWcEMDFYY5233rvSO2tIz2ejfvDHxk2lWwGARIEInUNnTIwphoGIrCFRVEDnnDM0rcsf+Jsf3i4MBgIgAEYUBVU1BkfjBpFyFmZdLLuYcWu7MQa8tYVzVVk5sgYMqroPGN/ied0UAQnPxTkEs0DhDAhvbW8Za5NACBEBCQ2Rjkr74XQYfii7SJ4SqtpNJwOCta4o/Ghcb+KGqqp2tsYEWHpviHzhrTNACCoEwvxBBIwelvnOWx0RFUGdN81oFFJm0WEYRGTVDdPp1BpHxgAYVznrP/asxsXtBsS9xjqDWRWQcs7LVWsNkaWy8M2oFk7MXJZlVVV1WTskOtd+/mCDBgFBSTdCi0D0rkSHGmP29g8QMcSsZEd1uTVtfOUBQEFIeav42CO4ixscAIqcEcQbvDmmm1slqMYQRdQaSjGGzJnFOldWJRkQkW838H7QU2KjN7NJsT5MuEKMYTNSi1Wr0u/u7qiCty6lmFlGznxhp9z+mPfDhUbRAKJYGB0V5tblrSvTJjEPIYQURYWZ9eE8uJyYhfGh5A98UNIEniuZAQAgojHIIiGE05NjBKnrqiocCMckjz3x2KX9nchyfVJ+6dbWVv3x3g8XGr4pIEBOWpbl1YPdpAKIAqpIzEBkjTWgKolDyqKgorIpA33QQ+KcKXN+sgkRWWNUQUU4p9nZacqcWa/sT/7Gf/8v/Hf/9Jc+vUVkYH+n+exe/ZG99feyi7yiASwiBYbp1vTxR6+JIiLkDE8+cu3f+z//u//p3/m7v/jn/sK6G2JOohtdNwUEMN+p3vM+DB9eCJsuFVVQIkPGZMWYhQFFpR3i5e3R3TffNNZseWVGY/3e3ocVvP2j7eJ63xQGBkUZROrtPV+4FFlEb1ze+jM/89ROo08+9cxLL764kZ1iYd0QLRFUgT6QJjbiQ92Hd3NSogyyO2muX9pBY2ZtWszn1uDpqh/a5cnRoREVhZR4Nd4GPAT9uDodLk66BOA4JU+ohM+//ObR26+vh6Coe7Vdncx/95/+g5ffPHrl1dfImP9/ede2Y9l1VceYa+3LqXu3k3bwJSZATCyCo2CI85BIKFGEwoP/AQnxUTzwBC9IUUQkFMkRQpEQAUJwJBwcx3H7Ervtdl+qTtW57L3XmnPysPYptxLLtNvnnKqEoaqHUkm1V+151m3OMcdYpvyVLz199dpj3/rWt0tN3x5oVYrmQhgFgDJADQRdu75/4uGjL3/5i8n513/33dR3t45P9g8m+Q5nfV661YFv3Z5utCZ6wYluIwPl7t3pbLEwukg4Pl3cfPvGzTfe/Pbf/k039BSK8Kuff/S5rz/z+c/9Xj8MwaPqgywRQ2kpARx4/Kj5zKcOSiPQdLa8O+9yTjsVvvYnTyowm6UbP79e7e68emKUSXV4VfrhAY/J94eLpos5QPQOgdAV8LNlf7boQhW6YWjqWiQQ+uILP3nzpVeutoRTmR0f1tbwIY8y0pxXGnn6iavqfvt0uczm4J07Jzfffme3EizmJE340xd/dmW3nmY83tbtpE0bZvBdeL3BIz1ZcDjhqnY66C/uniF1s/kASEoD6WfzpS7PXn/9tjGQGmtNH9370R2ucLe2rnfc7yyWkaPk6J278+n0LLfx5GxBRzcM0zRpkzokAirt67fXr5NxLy6aElC5GN0sqQslGxy4cdofsO8G5iQCZ5Abt+48slfNOoNbFbC/g1sPZMHZCnqTWZ+HIdVkoKuZkKfL4eT2Ha389kkmhcJe2SUnXN0XpwvPm21DvGjbbgHBrMxKgau55Nx7lNhEJDV1wjPfOe4einqyHGCezfODFsSiugnmgy36XsSdFKGbdUN/cuudU4nXFxVAMzOznOFUhw3DvDTHbw4XHIa+Q1t7lNCVa5llIEKkz8VnaqyM9Rbmgy0GVchEbP6gfkYDEWid8niRqmDT3koLu5ovk93p8kKDUOF0NotsdEboO4vefoOTGQBiRKwkuyf1GOigm6tZl5GL+3bK7kw5T3sbzA06yfUDa6qNC7yH9xaqzqylBE4riogwN3U1IVLWZTana05vv/Xu3ZPf6L0hJbiCkV22QktRM0++XNlMQggzpR/P1dWrGN7NH5FIfA+yIhlqybcXfmXSECAFUHcORjOvmiqa55z6vrdIMprpjel0nf/zB+GiD6yl1u/ojJYMK+XVLll2FK0Fdd+rfNpld3dVfjyBqd59AiwGmy5zoIeqUe3MsRxMVfrcKRkoDslq8Hxjmk7vbjzRffFhUFhQTwzJTEYjB++yqtHVQYh7pBznZIimpVfxwZGBHMCE06UGIqdULi+LZMXWGOZmlnJyBCHfO1n0s41zZC4Bsd6hNmqrnjdtJh2lfkACpqYpa6ADa8h05kQRzpIHUE2L5mGf3d1DiOrmYjdP+5NOYT4f9O7mqUqXIAwAABJFMQGAmy8zFurnxpzdoNlZWQ7+IPfnX4K6G7wz0Jyj04Zrab+SQDjMloMlczjEtkGSufhFCUVGwUv21IHiKuJFlh5wN+vcAarQ18EoNaDQlxNE6AYhOBjzoAh9DIFWZKvNHdk+tnHPfeBShIFEIzCIjkqI5RwJERbpJAAUJl1bdk0IUekcIigOirNBYxVb0+JewKLfw9zb/wPyZAEdk7EjalQ9wqja7RgFEZ1msr5UsyZUMHeoGgCS6hhSJlAM4Bww1bOu245ew6UIQwZm2ZBzaWAWGe+s50Yn5ac1ppoLPWf8fr8tjlUVhRAKHYukd+ebV7QCcEnCACC7hyqE94W772EUrdrK19hpoMCAwrQZ20OLTO58vkhDLtnYnLaxKxRcljDUdYQIIE5RU4yyMuWXD85N+hAoVppaXmi0dAeBoutnq+duB5clDDn5ThWioPjnjWtEiUQ5xa77iQRk5VcWwigaFGKEjAyaLWo1XJowDEV5VcoJ9X3bDBTDC96Pas9HQ9F/iyzNDUoQo260lVaUj+8Cff+4LGEwYFH0njky6nCPjZXjY/uTfzDG2SCrR6VUVkR3Rx2293IuSxjgnvo+EgIJZPVLWoabOTQ6ADcZd4cV1VjgriIS6/pjmurdPy5NGIp3NMd2xJW8/0dUi/mI8BXXfvQBgsdY5A+LJdO9x+XN4hKFQR2uOkpo+ChxBGC1Oq3/gzk2O4ArZ6GRZexECGJbkMFd4RKFAQrXQvXVIFxRHTHOhg0sD7LSXCyiVySzqqnCi8Xi9jQzLkVOCQBICRXppIGE27miM89X7XXDVmK5YzOku6qpEO4K47ZWJFyi2eC+SnOzEglVECHl/bVoE68klBw3x1hHYRWkJDaEsrk96VdxacIAQPsQGIkgsirDneOBWdwfBq4OAO/nrXxl8KdOrsMX/f5wicLgIjo6cYtb+aiCHI286QzrfisOOF0K19tgDnUftwoU6dwtHVgvzd4ARIEIzSGkut/rwEw6GQHT9dG2xqlQ3jjHxuxRBbmYGWwxqXRZZkNLmYQgRBTGgBDH23T5MncRC9WaX4yAUozPVgQRriSkAYDYSmt6GcnlwISgIZk3k7ZqqrZpqqoqdgssL0i8CrJXr635qeju2iq5tDogC0tqqzTsbmu1uBSL0j5ZV1VHe/S3rhzt792ZLixwPu9cDeYloSSgOKFrmw4tUYl3dAeKWUpdV20V6iou+2EYErxoH+YtHJkufjZEYieGVFlVydXDfYjs7+1YQtZ8r+unAHRbcm1eR+Kg2Vh2hZijFqmretJWRUEgwRCUW7nEXTSxnjzcCckA58Fe2w9qhk512XfuDpY0A1b2rWhrGfID6Yv9CggYaA4QqtY09WOPXuvnCwu0IiLg9Lwd+4aLng1NpCpEJMZQ1XE5pCHb9HQ2my9Ln+xqQRgFyNzXtkIQY1WVgMEPduunn3yky9otezMPIUSULWI9j/twXNhsILB3uO+pL/7mu5M6e1jOu1jViz6pjWa4GLOtFPDcEGldYxB3ggYneDbr/uvHr6SU1Inz9muRAMubr0lfkDUr0e5OuFhQVRyMIcSYNGWzbjkMfTa1bOPd2Vmi4G1by/pOrAYYMTqTwruk1987GT0eSlqvCNpvJc16AbNhssvGqJYVEmDJebDTmsvQJwbOlp1qEV8bmQAOjMVpgaMCPq5jfIHcU1iVktRwX3aDk2pWNB3cEITueEAhrfsfzEb/+q8+rG2rvTaKClSjuDmKaca8652SivMdHPBRFQ8ugBCmtlikbljPSALQjNbTJCB0gbuZqplqOROU5GvN2MjGhXy2Nxuaik8cSpdldmYGh0uCk4hRlikn1SBIg/lorlecL2jOJgod6rbM/brcv4qDkq3Sevfm0oMEpyS1UgrK5gFC8EHV/e4LW5oNFfHklfqwrYek5prNs5fuheCOfhhEkFLOOZuZ25jfdiAERKE4FPwoHib/BwTIDj0vQTtkxVt2txgoYyqFRvSik7DZz+s2wlDVeOYT8aCVWY8+ewaVdEKEoZKUcxChsywLxSCMRaNYuBNFwEAi1mvcLRuSDq7oSV5WodWBLJKExxBEpOzhjYRmk1nvbYThiSuh3Y1JMetzMpi7wUkEQtyDiKsNfTKDhABASAdJNiJ0Ol1paVjPzlxg7gKIKtwccLgApOzWjZB1LMIyjAyBEHjv+TBscIvYeBiaIFerMGRkt049OwkJLjFUu20zMi/cHRhUsykKS4kS4WLZgwFYJs+6zpPjAohjYlX227qKsfDGQ4x0G5JCNWeLkQE8OjiIMSyIvRg3dJnbbBiO9puv/P61JsTkkiCTmk10Cg/3mqPdxrLu1LGtRMQJD9RKdKfGbiWt+D7RRHRqiz4PG2C37wRUQADrINcO2hKTk7NZyqaqMUrOauZVlMV8UTYyC7IhU4cN7jxHbfXnzzw2O56d6SgYVgn3allmdDm3wMFe44blMNC9jRCJZkYALm4yG7r5xq6vCiTzFhzoJ/M+pWG/4qDIjgCWIijcNecgBGBw0g3yyf1wstDpms7N59jUbCD4xat7rdnNaX/SQZomO5IRIQSHuOWcZ4thvuizWi1om9A0dfGIhpu7btg2HjcVnSHCG0FwVERbSSDczg+xLIQxghUL3dxClD98qHmkWfPHd1NhaKpYh/zOe7Nbs7S305wu+nmXQhViVUmFKiIEg2WhTyo2baiiaEo6qCvEXDafXh6A5fn1EBCyrbjfMMgocVmHUNZCCtT9nPXdtnzq6pqPTZubDSZIQ05X9icSwq3TQUIlRN8lUqoqTJo2BAnBKQAkDZoHHWkSziFtI5XTF3ogAUCIKL7XcL9lFRirEGlBpHAIowjMqsAqytKkadjGZo0j2VwYXEMY1Cdta8DBTrM7qYbsQ8pRGATd0KsjxCDiOekwaCFDZPEkPttKx1kGZo5gDh8b7gyY1GG3ZnAjZVKxqUNVBYHXtRxOYhWkB0N86InmsTWOZFNbdPCq9vZOt1gspg8/NIn1bhNizqe7VxuhTWc94QJv60ZzGiwXH43OZBKa40W36VTaOTIwdRwC0aDmsRIJrGkAs0PV1RXwqg5tG9vIKIHwU1tMq1trHMamwpBNlq0OS2uYP7Fb35imbhi+9NQjh4d7L792a2+nc9bL5dw1p5zpnh29xuC2ukVsD9lhBiWYvKogAmGYNNKlLIyVe7lLh5WMsVAAO9qp3jlZm5/0phalpS1/0p08ts+D/Xg26+7ePd4R/6MvfrZLqpr+7E+f/cu/+ouHr0xyStklZU+ZlZvm/G63rizq/YIlv0SoI2UbsvUKJ5IWrj/HWixQVdWQs6olTQ+3zRql7Dd4b3j3Dfyo7j/92Zyns2A8PNx/8Wfv/Mu/vXx4ZX9/jz/4p3+8czxL2fLgmiWahV2bTrc6D84RQTUKfUhO1d60qWPOCHQzlWAi7IahtIB5TnNwp8oUYk3dqRuvtErA77R4/KB++6j2t5K6qcSnfvfam2/dXg79oFA3WjgbbO66nVLXL48QuBZhIkoEIlSBoaoqdn0qNslNUwFIOe1Xod2dLPuck7Z78dUbs25Nmfct0QM/ucsrV+XTd8MvDlyNOaFb+m5TJemqXZ+eheMT1614Sn0grgYeBM4dLl617Te+9uwbr/z8znS+M5l887lvfv/5752ezZ78g2d2D4+u/+j7e5/6zJe/8uzy7v/8x49ee/7fX13LALZU9rk191tzfQNaE5MmwrhjXCSdmS2PkX17jeAfiIWhBSFwoFsOjz58+MhDX3jhxz81k69947mzt9+4/vprz37hc1effPqtF39wcHT01a9//YXnb1571IBfqzAU9EA/w9ksv//z5UDn/p7qQ6BQBrMguPbE43//D/985ejoFz/9foJef+vuwy+98BSO35v2V4b5/Nar1vG168frGsClIE9eBmTA1XcjGsp3n//Pa9eOFosuLd/7zne+d/PW9Hh69q8/fEmHZRrS9Vd+/vorr/zw5bf++5WX1/X0LXbC/zqgAn67qnaC365VgjA7GKsqAkbXTxweLHPX5eGPn/7Sj99c/OSlF9b13P8FHCIDC98ZEuYAAAAASUVORK5CYII=",
"text/plain": [
"<PIL.Image.Image image mode=RGB size=130x256>"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test_img = PILImage.create(data_path / \"_marvel_example.jpg\")\n",
"res = predict(test_img)\n",
"\n",
"print(f\"Marvel character probability: {res}\")\n",
"test_img.to_thumb(256, 256)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2: Gradio\n",
"\n",
"See Tanishq's article [\"Gradio + HuggingFace Spaces: A Tutorial\"](https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial) for more detail on how Gradio can be configured to demo just about any ML model imaginable. I present here a bare minimum explanation of how it works and of the settings used in this particular demo."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We'll start by including a markdown file with information about our demo (e.g., objective, dataset, training procedure, results, etc...). This information will appear at the bottom of your gradio demo (assed to the `article` parameter of `gradio.Interface()`)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"with open(\"../gradio_article.md\") as f:\n",
" article = f.read()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The UI is ***defined*** via a call to `gradio.Interface()`. \n",
"\n",
"Here's a description of the parameters used in this demo:\n",
"\n",
"- `title` (str): The title of your demo (appears at the top)\n",
"- `description` (str): The description of your demo (appears beneath the title and is markup/HTML friendly)\n",
"- `article` (markdown file): Markdown with explanatory information about your demo (appears at the bottom)\n",
"- `examples` (str/list): Location of pre-defined examples users can use in your demo\n",
"- `interpretation` (callabel/str): A function that returns an interpretation for the prediction (options: \"unalighed\", \"horizontal\", \"vertical\")\n",
"- `layout` (str): You can specify either \"horizontal\" or \"vertical\"\n",
"- `allow_flagging` (str): Controls if/how users can flag predictions (options: \"never\", \"auto\", \"manual\") \n",
"\n",
"See the [docs](https://gradio.app/docs/#interface) for more info.\n",
"\n",
"Given the below, we can see/use our demo straight from out notebook!"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"interface_config = {\n",
" \"title\": \"Is it a Marvel Character?\",\n",
" \"description\": \"For those wanting to make sure they are rooting on the right heroes. Based on Jeremy Howards ['Is it a bird? Creating a model from your own data'](https://www.kaggle.com/code/jhoward/is-it-a-bird-creating-a-model-from-your-own-data)\",\n",
" \"article\": article,\n",
" \"examples\": [f\"{examples_path}/{f.name}\" for f in examples_path.iterdir()],\n",
" \"interpretation\": None,\n",
" \"layout\": \"horizontal\",\n",
" \"allow_flagging\": \"never\",\n",
"}\n",
"\n",
"demo = gr.Interface(\n",
" fn=predict,\n",
" inputs=gr.inputs.Image(shape=(512, 512)),\n",
" outputs=gr.outputs.Textbox(label=\"Marvel character probability\"),\n",
" **interface_config,\n",
")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The UI is ***launched*** via a call to `gradio.Interface` instance's `launch()` method. \n",
"\n",
"Here's a description of the parameters used in this demo:\n",
"\n",
"- `inline` (bool): If `True`, will display the interface in your Juypter notebook\n",
"- `inbrowser` (bool): If `True`, will launch the demo in a new browser tab\n",
"- `share` (bool): If `True`, will create a shareable link you can use to access your demo on the web\n",
"- `show_error` (bool): If `True`, errors in the interface will be included in the browser's console log\n",
"- `enable_queue` (bool): Controls how requests are processed (**Note: Set to `True` for request that will take a long time**)\n",
"\n",
"See the [docs](https://gradio.app/docs/#launch) for more info."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7863/\n",
"Running on public URL: https://55030.gradio.app\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting, check out Spaces (https://huggingface.co/spaces)\n"
]
},
{
"data": {
"text/html": [
"\n",
" <iframe\n",
" width=\"900\"\n",
" height=\"500\"\n",
" src=\"https://55030.gradio.app\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" \n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.IFrame at 0x7efb8444e190>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(<fastapi.applications.FastAPI at 0x7efbdecab100>,\n",
" 'http://127.0.0.1:7863/',\n",
" 'https://55030.gradio.app')"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"demo_config = {\n",
" \"inline\": True,\n",
" \"inbrowser\": False,\n",
" \"share\": True,\n",
" \"show_error\": True,\n",
" \"enable_queue\": True,\n",
"}\n",
"\n",
"demo.launch(**demo_config)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once we got things working, we need to put all the above into an `app.py` file like so:\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3: Deploy\n",
"\n",
"We'll be deploying our Gradio demo to [HuggingFace Spaces](https://huggingface.co/spaces), which Tanishq desrbies like this:\n",
"\n",
"> ... a free-to-use platform for hosting machine learning demos and apps [providing] a CPU environment with 16 GB RAM and 8 cores [and support for both] Gradio and Streamlit platforms.\n",
"\n",
"Here's how its done ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create your \"Space\"\n",
"\n",
"We start by creating a new space on the aptly named [\"Create a new Space\"](https://huggingface.co/new-space) page.\n",
"\n",
"I'll be using my favorite \"License\", wtfpl and setting this up for use on the fastai organization hosted on Hugging Face. I'm naming the space so folks will know it derives from lessons learned in the first session of the 2022 fastai course.\n",
"\n",
"![](hf_space_create.png)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set up your git repo\n",
"\n",
"After creating your space, you'll be offered up some instructions to configure the git repo managed by HF. Here's the approach I found easiest:\n",
"\n",
"1. Locally go a `git clone https://huggingface.co/spaces/{your_username}/{your_space_name}`\n",
"\n",
"2. `cd` into your `{your_space_name}` directory and copy/move all your example(s), models, etc... into it\n",
"\n",
"3. Install `git lfs` on your system (on my Ubuntu 16.04 box it was as simple as `sudo apt-get install git-lfs`). See [the docs](https://git-lfs.github.com/) for more details.\n",
"\n",
"4. Configure `git lfs` for your repo by running `git lfs install` and then `git lfs track \"*.pkl\"` to ensure it is handling the BIG files (in this case our `export.pkl`)\n",
"\n",
"5. You may want to update your `.gitignore` to remove training data, etc... that *should not* be included in the repo.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Define your `app.py`\n",
"\n",
"Spaces are organized as a git repo that contains an `app.py` file with all your inference and interface configuration information. This contents of this file look like this:\n",
"\n",
"```python\n",
"from fastai.vision.all import *\n",
"from fastcore.all import *\n",
"import gradio as gr\n",
"\n",
"data_path = Path(\"./data\")\n",
"models_path = Path(\"./models\")\n",
"examples_path = Path(\"./examples\")\n",
"\n",
"\n",
"def is_marvel(img):\n",
" return 1.0 if img.parent.name.lower().startswith(\"marvel\") else 0.0\n",
"\n",
"\n",
"inf_learn = load_learner(models_path / \"export.pkl\")\n",
"\n",
"\n",
"def predict(img):\n",
" pred, _, _ = inf_learn.predict(img)\n",
" return f\"{pred[0]*100:.2f}%\"\n",
"\n",
"\n",
"with open(\"gradio_article.md\") as f:\n",
" article = f.read()\n",
"\n",
"interface_config = {\n",
" \"title\": \"Is it a Marvel Character?\",\n",
" \"description\": \"For those wanting to make sure they are rooting on the right heroes. Based on Jeremy Howards ['Is it a bird? Creating a model from your own data'](https://www.kaggle.com/code/jhoward/is-it-a-bird-creating-a-model-from-your-own-data)\",\n",
" \"article\": article,\n",
" \"examples\": [f\"{examples_path}/{f.name}\" for f in examples_path.iterdir()],\n",
" \"interpretation\": None,\n",
" \"layout\": \"horizontal\",\n",
" \"allow_flagging\": \"never\",\n",
"}\n",
"\n",
"demo = gr.Interface(\n",
" fn=predict,\n",
" inputs=gr.inputs.Image(shape=(512, 512)),\n",
" outputs=gr.outputs.Textbox(label=\"Marvel character probability\"),\n",
" **interface_config,\n",
")\n",
"\n",
"demo_config = {\n",
" \"inline\": True,\n",
" \"inbrowser\": False,\n",
" \"share\": True,\n",
" \"show_error\": True,\n",
" \"enable_queue\": True,\n",
"}\n",
"\n",
"demo.launch()\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Define a `requirements.txt`\n",
"\n",
"We'll also include a `requirements.txt` file with the libraries required for our demo like so:\n",
"\n",
"```\n",
"fastai\n",
"gradio\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Commit and Push\n",
"\n",
"Simply ...\n",
"\n",
"```\n",
"git add .\n",
"git commit -am 'initial commit'\n",
"git push\n",
"```\n",
"\n",
"... all your code will be properly pushed to your HF Space's repo and your application will be spun up for you. And voila, you now have a ***free*** web application you can use to show off your machine learning prowess just like this one!\n",
"\n",
"![](hf_space_app.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "8d7a979f659379f6312caf3993ac2ab4b165620bf8bd7cd5a3069321dc3c91fd"
},
"kernelspec": {
"display_name": "Python 3.9.12 ('fastexamples')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|