Spaces:
Runtime error
Runtime error
whichlight
commited on
Commit
β’
78f684b
1
Parent(s):
a9eaf12
updating img files
Browse files- app.py +10 -11
- blue.jpg β examples/blue.jpg +0 -0
- closed-door.jpeg β examples/closed-door.jpg +0 -0
- crack_1.jpg β examples/crack_1.jpg +0 -0
- crack_2.jpg β examples/crack_2.jpg +0 -0
- cracked_3.jpg β examples/cracked_3.jpg +0 -0
- green.jpg β examples/green.jpg +0 -0
- inside.jpg β examples/inside.jpg +0 -0
- old.jpg β examples/old.jpg +0 -0
- open-door.jpeg β examples/open-door.jpg +0 -0
- opening_door.jpg β examples/opening_door.jpg +0 -0
- red.jpg β examples/red.jpg +0 -0
- red_arch.jpg β examples/red_arch.jpg +0 -0
app.py
CHANGED
@@ -7,31 +7,30 @@ title = "Open/Closed Door Classifier"
|
|
7 |
description = "A classifier trained using fastai on search images of open and closed doors." \
|
8 |
"Created for Lesson 2 in the fastai course."
|
9 |
|
10 |
-
examples = ['
|
11 |
-
'
|
12 |
-
'
|
13 |
-
'
|
14 |
-
'
|
15 |
-
|
16 |
|
|
|
|
|
17 |
|
18 |
|
19 |
learn = load_learner('door_model.pkl')
|
20 |
labels = learn.dls.vocab
|
21 |
|
22 |
-
def predict(
|
23 |
-
img = PILImage.create(
|
24 |
pred,pred_idx,probs = learn.predict(img)
|
25 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
26 |
|
27 |
|
28 |
-
|
29 |
iface = gr.Interface(
|
30 |
fn=predict,
|
31 |
inputs=gr.Image(shape=(512, 512)),
|
32 |
outputs=gr.Label(num_top_classes=3),
|
33 |
title=title,
|
34 |
description=description,
|
35 |
-
examples=examples
|
36 |
-
interpretation="default").queue().launch()
|
37 |
|
|
|
7 |
description = "A classifier trained using fastai on search images of open and closed doors." \
|
8 |
"Created for Lesson 2 in the fastai course."
|
9 |
|
10 |
+
examples = ['open-door.jpg',
|
11 |
+
'crack_2.jpg', 'red_arch.jpg',
|
12 |
+
'green.jpg', 'red.jpg', 'opening_door.jpg',
|
13 |
+
'inside.jpg', './cracked_3.jpg', './old.jpg',
|
14 |
+
'blue.jpg']
|
|
|
15 |
|
16 |
+
examples = list(map(lambda x: "examples/" + x, examples))
|
17 |
+
#print(examples)
|
18 |
|
19 |
|
20 |
learn = load_learner('door_model.pkl')
|
21 |
labels = learn.dls.vocab
|
22 |
|
23 |
+
def predict(img_input):
|
24 |
+
img = PILImage.create(img_input)
|
25 |
pred,pred_idx,probs = learn.predict(img)
|
26 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
27 |
|
28 |
|
|
|
29 |
iface = gr.Interface(
|
30 |
fn=predict,
|
31 |
inputs=gr.Image(shape=(512, 512)),
|
32 |
outputs=gr.Label(num_top_classes=3),
|
33 |
title=title,
|
34 |
description=description,
|
35 |
+
examples=examples).queue().launch()
|
|
|
36 |
|
blue.jpg β examples/blue.jpg
RENAMED
File without changes
|
closed-door.jpeg β examples/closed-door.jpg
RENAMED
File without changes
|
crack_1.jpg β examples/crack_1.jpg
RENAMED
File without changes
|
crack_2.jpg β examples/crack_2.jpg
RENAMED
File without changes
|
cracked_3.jpg β examples/cracked_3.jpg
RENAMED
File without changes
|
green.jpg β examples/green.jpg
RENAMED
File without changes
|
inside.jpg β examples/inside.jpg
RENAMED
File without changes
|
old.jpg β examples/old.jpg
RENAMED
File without changes
|
open-door.jpeg β examples/open-door.jpg
RENAMED
File without changes
|
opening_door.jpg β examples/opening_door.jpg
RENAMED
File without changes
|
red.jpg β examples/red.jpg
RENAMED
File without changes
|
red_arch.jpg β examples/red_arch.jpg
RENAMED
File without changes
|