import gradio as gr from fastai.vision.all import * import skimage title = "Open/Closed Door Classifier" description = "A classifier trained using fastai on search images of open and closed doors." \ "Created for Lesson 2 in the fastai course." examples = ['open-door.jpg', 'crack_2.jpg', 'red_arch.jpg', 'green.jpg', 'red.jpg', 'opening_door.jpg', 'inside.jpg', './cracked_3.jpg', './old.jpg', 'blue.jpg'] examples = list(map(lambda x: "examples/" + x, examples)) #print(examples) learn = load_learner('door_model.pkl') labels = learn.dls.vocab def predict(img_input): img = PILImage.create(img_input) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} iface = gr.Interface( fn=predict, inputs=gr.Image(shape=(512, 512)), outputs=gr.Label(num_top_classes=3), title=title, description=description, examples=examples).queue().launch()