File size: 1,325 Bytes
8b0b30f
 
7534432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b0b30f
7534432
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
<!DOCTYPE html>
<html>
    <head>
        <script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
    </head>
    <body>
<gradio-lite>

<gradio-requirements>
transformers_js_py
</gradio-requirements>

<gradio-file name="app.py" entrypoint>
from transformers_js import import_transformers_js, as_url
import gradio as gr

transformers = await import_transformers_js()
pipeline = transformers.pipeline
pipe = await pipeline('object-detection', "Xenova/yolos-tiny")

async def detect(image):
    result = await pipe(as_url(image))
    gradio_labels = [
        # List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]]
        (
            (
                int(item["box"]["xmin"]),
                int(item["box"]["ymin"]),
                int(item["box"]["xmax"]),
                int(item["box"]["ymax"]),
            ),
            item["label"],
        )
        for item in result
    ]
    annotated_image_data = image, gradio_labels
    return annotated_image_data, result

demo = gr.Interface(
    detect,
    gr.Image(type="filepath"),
    [
        gr.AnnotatedImage(),
        gr.JSON(),
    ]
)

demo.launch()
</gradio-file>

</gradio-lite>

    </body>
</html>