import PIL import torch import gradio as gr import os from process import load_seg_model, get_palette, generate_mask device = 'cpu' def read_content(file_path: str) -> str: """read the content of target file """ with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def initialize_and_load_models(): checkpoint_path = 'model/cloth_segm.pth' net = load_seg_model(checkpoint_path, device=device) return net net = initialize_and_load_models() palette = get_palette(4) def run(img): cloth_seg = generate_mask(img, net=net, palette=palette, device=device) return cloth_seg # Define input and output interfaces input_image = gr.inputs.Image(label="Input Image", type="pil") # Define the Gradio interface cloth_seg_image = gr.outputs.Image(label="Cloth Segmentation", type="pil") title = "Demo for Cloth Segmentation" description = "An app for Cloth Segmentation" inputs = [input_image] outputs = [cloth_seg_image] css = ''' .container {max-width: 1150px;margin: auto;padding-top: 1.5rem} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' example={} image_dir='input' image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir)] image_list.sort() image_blocks = gr.Blocks(css=css) with image_blocks as demo: gr.HTML(read_content("header.html")) with gr.Group(): with gr.Box(): with gr.Row(): with gr.Column(): image = gr.Image(source='upload', elem_id="image_upload", type="pil", label="Input Image") with gr.Column(): image_out = gr.Image(label="Output", elem_id="output-img").style(height=400) with gr.Row(): with gr.Column(): gr.Examples(image_list, inputs=[image],label="Examples - Input Images",examples_per_page=12) with gr.Column(): with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): btn = gr.Button("Run!").style( margin=False, rounded=(False, True, True, False), full_width=True, ) btn.click(fn=run, inputs=[image], outputs=[image_out]) gr.HTML( """

ACKNOWLEDGEMENTS

U2net model is from original u2net repo. Thanks to Xuebin Qin for amazing repo.

Codes are modified from levindabhi/cloth-segmentation

""" ) image_blocks.launch()