Spaces:
Sleeping
Sleeping
Upload dataset_extraction.py
Browse files- dataset_extraction.py +44 -0
dataset_extraction.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
import torch
|
3 |
+
import nltk
|
4 |
+
from SciAssist import DatasetExtraction
|
5 |
+
|
6 |
+
device = "gpu" if torch.cuda.is_available() else "cpu"
|
7 |
+
de_pipeline = DatasetExtraction(os_name="nt")
|
8 |
+
|
9 |
+
|
10 |
+
def de_for_str(input):
|
11 |
+
list_input = nltk.sent_tokenize(input)
|
12 |
+
results = de_pipeline.extract(list_input, type="str", save_results=False)
|
13 |
+
|
14 |
+
# output = []
|
15 |
+
# for res in results["dataset_mentions"]:
|
16 |
+
# output.append(f"{res}\n\n")
|
17 |
+
# return "".join(output)
|
18 |
+
|
19 |
+
output = []
|
20 |
+
for mention_pair in results["dataset_mentions"]:
|
21 |
+
output.append((mention_pair[0], mention_pair[1]))
|
22 |
+
output.append(("\n\n", None))
|
23 |
+
return output
|
24 |
+
|
25 |
+
def de_for_file(input):
|
26 |
+
if input == None:
|
27 |
+
return None
|
28 |
+
filename = input.name
|
29 |
+
# Identify the format of input and parse reference strings
|
30 |
+
if filename[-4:] == ".txt":
|
31 |
+
results = de_pipeline.extract(filename, type="txt", save_results=False)
|
32 |
+
elif filename[-4:] == ".pdf":
|
33 |
+
results = de_pipeline.extract(filename, type="pdf", save_results=False)
|
34 |
+
else:
|
35 |
+
return [("File Format Error !", None)]
|
36 |
+
|
37 |
+
output = []
|
38 |
+
for mention_pair in results["dataset_mentions"]:
|
39 |
+
output.append((mention_pair[0], mention_pair[1]))
|
40 |
+
output.append(("\n\n", None))
|
41 |
+
return output
|
42 |
+
|
43 |
+
|
44 |
+
de_str_example = "BAKIS incorporates information derived from the bank balance sheets and supervisory reports of all German banks ."
|