Spaces:
Sleeping
Sleeping
add ref parser and summarizer
Browse filesreference string parsing and summarization demos
- app.py +111 -0
- description.py +30 -0
- reference_string_parsing.py +36 -0
- requirements.txt +2 -0
- summarization.py +37 -0
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from description import *
|
3 |
+
|
4 |
+
from reference_string_parsing import *
|
5 |
+
from summarization import *
|
6 |
+
|
7 |
+
with gr.Blocks(css="#htext span {white-space: pre-line}") as demo:
|
8 |
+
gr.Markdown("# Gradio Demo for SciAssist")
|
9 |
+
with gr.Tabs():
|
10 |
+
# Reference String Parsing
|
11 |
+
with gr.TabItem("Reference String Parsing"):
|
12 |
+
with gr.Box():
|
13 |
+
gr.Markdown(rsp_str_md)
|
14 |
+
with gr.Row():
|
15 |
+
with gr.Column():
|
16 |
+
rsp_str = gr.Textbox(label="Input String")
|
17 |
+
with gr.Column():
|
18 |
+
rsp_str_dehyphen = gr.Checkbox(label="dehyphen")
|
19 |
+
with gr.Row():
|
20 |
+
rsp_str_btn = gr.Button("Parse")
|
21 |
+
rsp_str_output = gr.HighlightedText(
|
22 |
+
elem_id="htext",
|
23 |
+
label="The Result of Parsing",
|
24 |
+
combine_adjacent=True,
|
25 |
+
adjacent_separator=" ",
|
26 |
+
)
|
27 |
+
rsp_str_examples = gr.Examples(examples=[[
|
28 |
+
"Waleed Ammar, Matthew E. Peters, Chandra Bhagavat- ula, and Russell Power. 2017. The ai2 system at semeval-2017 task 10 (scienceie): semi-supervised end-to-end entity and relation extraction. In ACL workshop (SemEval).",
|
29 |
+
True],
|
30 |
+
[
|
31 |
+
"Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and Andrew D. McCallum. 2017. Semeval-2017 task 10 (scienceie): Extracting keyphrases and relations from scientific publications. In ACL workshop (SemEval).",
|
32 |
+
False]], inputs=[rsp_str, rsp_str_dehyphen])
|
33 |
+
with gr.Box():
|
34 |
+
gr.Markdown(rsp_file_md)
|
35 |
+
with gr.Row():
|
36 |
+
with gr.Column():
|
37 |
+
rsp_file = gr.File(label="Input File")
|
38 |
+
rsp_file_dehyphen = gr.Checkbox(label="dehyphen")
|
39 |
+
with gr.Row():
|
40 |
+
rsp_file_btn = gr.Button("Parse")
|
41 |
+
|
42 |
+
rsp_file_output = gr.HighlightedText(
|
43 |
+
elem_id="htext",
|
44 |
+
label="The Result of Parsing",
|
45 |
+
combine_adjacent=True,
|
46 |
+
adjacent_separator=" ",
|
47 |
+
)
|
48 |
+
rsp_file_examples = gr.Examples(examples=[["examples/N18-3011_ref.txt", False],], inputs=[rsp_file, rsp_file_dehyphen])
|
49 |
+
|
50 |
+
|
51 |
+
rsp_file_btn.click(
|
52 |
+
fn=rsp_for_file,
|
53 |
+
inputs=[rsp_file, rsp_file_dehyphen],
|
54 |
+
outputs=rsp_file_output
|
55 |
+
)
|
56 |
+
rsp_str_btn.click(
|
57 |
+
fn=rsp_for_str,
|
58 |
+
inputs=[rsp_str, rsp_str_dehyphen],
|
59 |
+
outputs=rsp_str_output
|
60 |
+
)
|
61 |
+
|
62 |
+
# Single Document Summarization
|
63 |
+
with gr.TabItem("Single Document Summarization"):
|
64 |
+
with gr.Box():
|
65 |
+
gr.Markdown(ssum_str_md)
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
ssum_str = gr.Textbox(label="Input String")
|
69 |
+
with gr.Column():
|
70 |
+
ssum_str_beams = gr.Number(label="Number of beams for beam search", value=1, precision=0)
|
71 |
+
ssum_str_sequences = gr.Number(label="Number of generated summaries", value=1, precision=0)
|
72 |
+
with gr.Row():
|
73 |
+
ssum_str_btn = gr.Button("Generate")
|
74 |
+
ssum_str_output = gr.Textbox(
|
75 |
+
elem_id="htext",
|
76 |
+
label="Summary",
|
77 |
+
)
|
78 |
+
ssum_str_examples = gr.Examples(examples=[[ssum_str_example, 1, 1], ],
|
79 |
+
inputs=[ssum_str, ssum_str_beams, ssum_str_sequences])
|
80 |
+
with gr.Box():
|
81 |
+
gr.Markdown(ssum_file_md)
|
82 |
+
with gr.Row():
|
83 |
+
with gr.Column():
|
84 |
+
ssum_file = gr.File(label="Input File")
|
85 |
+
with gr.Column():
|
86 |
+
ssum_file_beams = gr.Number(label="Number of beams for beam search", value=1, precision=0)
|
87 |
+
ssum_file_sequences = gr.Number(label="Number of generated summaries", value=1, precision=0)
|
88 |
+
with gr.Row():
|
89 |
+
ssum_file_btn = gr.Button("Generate")
|
90 |
+
ssum_file_output = gr.Textbox(
|
91 |
+
elem_id="htext",
|
92 |
+
label="Summary",
|
93 |
+
)
|
94 |
+
ssum_file_examples = gr.Examples(examples=[["examples/BERT_body.txt", 10, 2],],
|
95 |
+
inputs=[ssum_file, ssum_file_beams, ssum_file_sequences])
|
96 |
+
|
97 |
+
ssum_file_btn.click(
|
98 |
+
fn=ssum_for_file,
|
99 |
+
inputs=[ssum_file, ssum_file_beams, ssum_file_sequences],
|
100 |
+
outputs=ssum_file_output
|
101 |
+
)
|
102 |
+
ssum_str_btn.click(
|
103 |
+
fn=ssum_for_str,
|
104 |
+
inputs=[ssum_str, ssum_str_beams, ssum_str_sequences],
|
105 |
+
outputs=ssum_str_output
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
demo.launch()
|
description.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Reference string parsing Markdown
|
2 |
+
rsp_str_md = '''
|
3 |
+
To **test on strings**, simply input one or more strings.
|
4 |
+
'''
|
5 |
+
|
6 |
+
rsp_file_md = '''
|
7 |
+
To **test on a file**, the input can be:
|
8 |
+
|
9 |
+
- A txt file which contains a reference string in each line.
|
10 |
+
|
11 |
+
|
12 |
+
'''
|
13 |
+
# - A pdf file which contains a whole scientific document without any processing (including title, author...).
|
14 |
+
|
15 |
+
ssum_str_md = '''
|
16 |
+
To **test on strings**, simply input a string.
|
17 |
+
|
18 |
+
**Note**: The **number of beams** should be **divisible** by the **number of generated summaries** for group beam search.
|
19 |
+
|
20 |
+
'''
|
21 |
+
|
22 |
+
ssum_file_md = '''
|
23 |
+
To **test on a file**, the input can be:
|
24 |
+
|
25 |
+
- A txt file which contains the content to be summarized.
|
26 |
+
|
27 |
+
**Note**: The **number of beams** should be **divisible** by the **number of generated summaries** for group beam search.
|
28 |
+
|
29 |
+
'''
|
30 |
+
# - A pdf file which contains a whole scientific document without any processing (including title, author...).
|
reference_string_parsing.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
import torch
|
3 |
+
from SciAssist import ReferenceStringParsing
|
4 |
+
|
5 |
+
device = "gpu" if torch.cuda.is_available() else "cpu"
|
6 |
+
rsp_pipeline = ReferenceStringParsing()
|
7 |
+
|
8 |
+
|
9 |
+
def rsp_for_str(input, dehyphen=False) -> List[Tuple[str, str]]:
|
10 |
+
results = rsp_pipeline.predict(input, type="str", dehyphen=dehyphen)
|
11 |
+
output = []
|
12 |
+
for res in results:
|
13 |
+
for token, tag in zip(res["tokens"], res["tags"]):
|
14 |
+
output.append((token, tag))
|
15 |
+
output.append(("\n\n", None))
|
16 |
+
return output
|
17 |
+
|
18 |
+
|
19 |
+
def rsp_for_file(input, dehyphen=False) -> List[Tuple[str, str]]:
|
20 |
+
if input == None:
|
21 |
+
return None
|
22 |
+
filename = input.name
|
23 |
+
# Identify the format of input and parse reference strings
|
24 |
+
if filename[-4:] == ".txt":
|
25 |
+
results = rsp_pipeline.predict(filename, type="txt", dehyphen=dehyphen)
|
26 |
+
# elif filename[-4:] == ".pdf":
|
27 |
+
# results = rsp_pipeline.predict(filename, dehyphen=dehyphen)
|
28 |
+
else:
|
29 |
+
return [("File Format Error !", None)]
|
30 |
+
# Prepare for the input gradio.HighlightedText accepts.
|
31 |
+
output = []
|
32 |
+
for res in results:
|
33 |
+
for token, tag in zip(res["tokens"], res["tags"]):
|
34 |
+
output.append((token, tag))
|
35 |
+
output.append(("\n\n", None))
|
36 |
+
return output
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
SciAssist==0.0.18
|
summarization.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
import torch
|
3 |
+
from SciAssist import Summarization
|
4 |
+
|
5 |
+
device = "gpu" if torch.cuda.is_available() else "cpu"
|
6 |
+
ssum_pipeline = Summarization()
|
7 |
+
|
8 |
+
|
9 |
+
def ssum_for_str(input, num_beams=1, num_return_sequences=1) -> List[Tuple[str, str]]:
|
10 |
+
results = ssum_pipeline.predict(input, type="str", num_beams=num_beams, num_return_sequences=num_return_sequences)
|
11 |
+
|
12 |
+
output = []
|
13 |
+
for res in results["summary"]:
|
14 |
+
output.append(f"{res}\n\n")
|
15 |
+
return "".join(output)
|
16 |
+
|
17 |
+
|
18 |
+
def ssum_for_file(input, num_beams=1, num_return_sequences=1) -> List[Tuple[str, str]]:
|
19 |
+
if input == None:
|
20 |
+
return None
|
21 |
+
filename = input.name
|
22 |
+
# Identify the format of input and parse reference strings
|
23 |
+
if filename[-4:] == ".txt":
|
24 |
+
results = ssum_pipeline.predict(filename, type="txt", num_beams=num_beams,
|
25 |
+
num_return_sequences=num_return_sequences, save_results=False)
|
26 |
+
# elif filename[-4:] == ".pdf":
|
27 |
+
# results = rsp_pipeline.predict(filename, num_beams=num_beams, num_return_sequences=num_return_sequences)
|
28 |
+
else:
|
29 |
+
return [("File Format Error !", None)]
|
30 |
+
|
31 |
+
output = []
|
32 |
+
for res in results["summary"]:
|
33 |
+
output.append(f"{res}\n\n")
|
34 |
+
return "".join(output)
|
35 |
+
|
36 |
+
|
37 |
+
ssum_str_example = "Language model pre-training has been shown to be effective for improving many natural language processing tasks ( Dai and Le , 2015 ; Peters et al. , 2018a ; Radford et al. , 2018 ; Howard and Ruder , 2018 ) . These include sentence-level tasks such as natural language inference ( Bowman et al. , 2015 ; Williams et al. , 2018 ) and paraphrasing ( Dolan and Brockett , 2005 ) , which aim to predict the relationships between sentences by analyzing them holistically , as well as token-level tasks such as named entity recognition and question answering , where models are required to produce fine-grained output at the token level ( Tjong Kim Sang and De Meulder , 2003 ; Rajpurkar et al. , 2016 ) . There are two existing strategies for applying pre-trained language representations to downstream tasks : feature-based and fine-tuning . The feature-based approach , such as ELMo ( Peters et al. , 2018a ) , uses task-specific architectures that include the pre-trained representations as additional features . The fine-tuning approach , such as the Generative Pre-trained Transformer ( OpenAI GPT ) ( Radford et al. , 2018 ) , introduces minimal task-specific parameters , and is trained on the downstream tasks by simply fine-tuning all pretrained parameters . The two approaches share the same objective function during pre-training , where they use unidirectional language models to learn general language representations . We argue that current techniques restrict the power of the pre-trained representations , especially for the fine-tuning approaches . The major limitation is that standard language models are unidirectional , and this limits the choice of architectures that can be used during pre-training . For example , in OpenAI GPT , the authors use a left-toright architecture , where every token can only attend to previous tokens in the self-attention layers of the Transformer ( Vaswani et al. , 2017 ) . Such restrictions are sub-optimal for sentence-level tasks , and could be very harmful when applying finetuning based approaches to token-level tasks such as question answering , where it is crucial to incorporate context from both directions . In this paper , we improve the fine-tuning based approaches by proposing BERT : Bidirectional Encoder Representations from Transformers . BERT alleviates the previously mentioned unidirectionality constraint by using a `` masked language model '' ( MLM ) pre-training objective , inspired by the Cloze task ( Taylor , 1953 ) . The masked language model randomly masks some of the tokens from the input , and the objective is to predict the original vocabulary id of the masked arXiv:1810.04805v2 [ cs.CL ] 24 May 2019 word based only on its context . Unlike left-toright language model pre-training , the MLM objective enables the representation to fuse the left and the right context , which allows us to pretrain a deep bidirectional Transformer . In addition to the masked language model , we also use a `` next sentence prediction '' task that jointly pretrains text-pair representations . The contributions of our paper are as follows : • We demonstrate the importance of bidirectional pre-training for language representations . Unlike Radford et al . ( 2018 ) , which uses unidirectional language models for pre-training , BERT uses masked language models to enable pretrained deep bidirectional representations . This is also in contrast to Peters et al . ( 2018a ) , which uses a shallow concatenation of independently trained left-to-right and right-to-left LMs . • We show that pre-trained representations reduce the need for many heavily-engineered taskspecific architectures . BERT is the first finetuning based representation model that achieves state-of-the-art performance on a large suite of sentence-level and token-level tasks , outperforming many task-specific architectures . • BERT advances the state of the art for eleven NLP tasks . The code and pre-trained models are available at https : //github.com/ google-research/bert . "
|