Spaces:
Runtime error
Runtime error
wira.indra
commited on
Commit
•
faf61e8
1
Parent(s):
42535f1
add twitter feature
Browse files- app.py +68 -5
- requirements.txt +5 -1
app.py
CHANGED
@@ -1,4 +1,10 @@
|
|
1 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
from gradio.mix import Parallel
|
@@ -28,11 +34,28 @@ examples = [
|
|
28 |
def sentiment_analysis(text):
|
29 |
output = sentiment_pipeline(text)
|
30 |
return {elm["label"]: elm["score"] for elm in output[0]}
|
31 |
-
|
32 |
def ner(text):
|
33 |
output = ner_pipeline(text)
|
34 |
return {"text": text, "entities": output}
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
sentiment_demo = gr.Interface(
|
37 |
fn=sentiment_analysis,
|
38 |
inputs="text",
|
@@ -45,7 +68,47 @@ ner_demo = gr.Interface(
|
|
45 |
examples=examples)
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import pipeline
|
2 |
+
import pandas as pd
|
3 |
+
import re
|
4 |
+
from tqdm import tqdm
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import twitter_scraper as ts
|
7 |
+
|
8 |
|
9 |
import gradio as gr
|
10 |
from gradio.mix import Parallel
|
|
|
34 |
def sentiment_analysis(text):
|
35 |
output = sentiment_pipeline(text)
|
36 |
return {elm["label"]: elm["score"] for elm in output[0]}
|
37 |
+
|
38 |
def ner(text):
|
39 |
output = ner_pipeline(text)
|
40 |
return {"text": text, "entities": output}
|
41 |
|
42 |
+
def sentiment_df(df):
|
43 |
+
text_list = list(df["Text"].astype(str).values)
|
44 |
+
result = [sentiment_analysis(text) for text in text_list]
|
45 |
+
df['Label'] = [pred['label'] for pred in result]
|
46 |
+
df['Score'] = [round(pred['Score'], 3) for pred in result]
|
47 |
+
return df
|
48 |
+
|
49 |
+
|
50 |
+
def twitter_analyzer(keyword, max_tweets):
|
51 |
+
df = ts.scrape_tweets(keyword, max_tweets=max_tweets)
|
52 |
+
df["Text"] = df["Text"].apply(ts.preprocess_text)
|
53 |
+
print("Analyzing sentiment...")
|
54 |
+
df = sentiment_df(df)
|
55 |
+
fig = plt.figure()
|
56 |
+
df.groupby(["Label"])["Text"].count().plot.pie(autopct="%.1f%%", figsize=(6,6))
|
57 |
+
return fig, df[["URL", "Text", "Label", "Score"]]
|
58 |
+
|
59 |
sentiment_demo = gr.Interface(
|
60 |
fn=sentiment_analysis,
|
61 |
inputs="text",
|
|
|
68 |
examples=examples)
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
+
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
|
74 |
+
gr.Markdown("""Entity Based Sentiment Analysis Indonesia""")
|
75 |
+
|
76 |
+
gr.Markdown(
|
77 |
+
"""
|
78 |
+
"""
|
79 |
+
)
|
80 |
+
|
81 |
+
with gr.Tab("Single Input"):
|
82 |
+
Parallel(
|
83 |
+
sentiment_demo, ner_demo,
|
84 |
+
inputs=gr.Textbox(lines=10, label="Input Text", placeholder="Enter sentences here..."),
|
85 |
+
examples=examples
|
86 |
+
)
|
87 |
+
|
88 |
+
with gr.Tab("Twitter"):
|
89 |
+
with gr.Blocks():
|
90 |
+
with gr.Row():
|
91 |
+
with gr.Column():
|
92 |
+
keyword_textbox = gr.Textbox(lines=1, label="Keyword")
|
93 |
+
max_tweets_component = gr.Number(value=10, label="Total of Tweets to Scrape", precision=0)
|
94 |
+
button = gr.Button("Submit")
|
95 |
+
|
96 |
+
plot_component = gr.Plot(label="Pie Chart of Sentiments")
|
97 |
+
dataframe_component = gr.DataFrame(type="pandas",
|
98 |
+
label="Dataframe",
|
99 |
+
max_rows=(20,'fixed'),
|
100 |
+
overflow_row_behaviour='paginate',
|
101 |
+
wrap=True)
|
102 |
+
|
103 |
+
gr.Markdown(
|
104 |
+
"""
|
105 |
+
|
106 |
+
"""
|
107 |
+
|
108 |
+
)
|
109 |
+
|
110 |
+
button.click(twitter_analyzer,
|
111 |
+
inputs=[keyword_textbox, max_tweets_component],
|
112 |
+
outputs=[plot_component, dataframe_component])
|
113 |
+
|
114 |
+
demo.launch(inbrowser=True)
|
requirements.txt
CHANGED
@@ -1,2 +1,6 @@
|
|
1 |
torch
|
2 |
-
transformers
|
|
|
|
|
|
|
|
|
|
1 |
torch
|
2 |
+
transformers
|
3 |
+
snscrape
|
4 |
+
pandas
|
5 |
+
matplotlib
|
6 |
+
numpy
|