PFA-Demo / utils /demo.py
wissemkarous's picture
Rename demo.py to utils/demo.py
058f1ff verified
raw
history blame
5.65 kB
import torch
import os
from dataset import MyDataset
import numpy as np
import cv2
import face_alignment
import streamlit as st
def get_position(size, padding=0.25):
x = [
0.000213256,
0.0752622,
0.18113,
0.29077,
0.393397,
0.586856,
0.689483,
0.799124,
0.904991,
0.98004,
0.490127,
0.490127,
0.490127,
0.490127,
0.36688,
0.426036,
0.490127,
0.554217,
0.613373,
0.121737,
0.187122,
0.265825,
0.334606,
0.260918,
0.182743,
0.645647,
0.714428,
0.793132,
0.858516,
0.79751,
0.719335,
0.254149,
0.340985,
0.428858,
0.490127,
0.551395,
0.639268,
0.726104,
0.642159,
0.556721,
0.490127,
0.423532,
0.338094,
0.290379,
0.428096,
0.490127,
0.552157,
0.689874,
0.553364,
0.490127,
0.42689,
]
y = [
0.106454,
0.038915,
0.0187482,
0.0344891,
0.0773906,
0.0773906,
0.0344891,
0.0187482,
0.038915,
0.106454,
0.203352,
0.307009,
0.409805,
0.515625,
0.587326,
0.609345,
0.628106,
0.609345,
0.587326,
0.216423,
0.178758,
0.179852,
0.231733,
0.245099,
0.244077,
0.231733,
0.179852,
0.178758,
0.216423,
0.244077,
0.245099,
0.780233,
0.745405,
0.727388,
0.742578,
0.727388,
0.745405,
0.780233,
0.864805,
0.902192,
0.909281,
0.902192,
0.864805,
0.784792,
0.778746,
0.785343,
0.778746,
0.784792,
0.824182,
0.831803,
0.824182,
]
x, y = np.array(x), np.array(y)
x = (x + padding) / (2 * padding + 1)
y = (y + padding) / (2 * padding + 1)
x = x * size
y = y * size
return np.array(list(zip(x, y)))
def output_video(p, txt, output_path):
files = os.listdir(p)
files = sorted(files, key=lambda x: int(os.path.splitext(x)[0]))
font = cv2.FONT_HERSHEY_SIMPLEX
for file, line in zip(files, txt):
img = cv2.imread(os.path.join(p, file))
h, w, _ = img.shape
img = cv2.putText(
img, line, (w // 8, 11 * h // 12), font, 1.2, (0, 0, 0), 3, cv2.LINE_AA
)
img = cv2.putText(
img,
line,
(w // 8, 11 * h // 12),
font,
1.2,
(255, 255, 255),
0,
cv2.LINE_AA,
)
h = h // 2
w = w // 2
img = cv2.resize(img, (w, h))
cv2.imwrite(os.path.join(p, file), img)
# create the output_videos directory if it doesn't exist
if not os.path.exists(output_path):
os.makedirs(output_path)
output = os.path.join(output_path, "output.mp4")
cmd = "ffmpeg -hide_banner -loglevel error -y -i {}/%04d.jpg -r 25 {}".format(
p, output
)
os.system(cmd)
def transformation_from_points(points1, points2):
points1 = points1.astype(np.float64)
points2 = points2.astype(np.float64)
c1 = np.mean(points1, axis=0)
c2 = np.mean(points2, axis=0)
points1 -= c1
points2 -= c2
s1 = np.std(points1)
s2 = np.std(points2)
points1 /= s1
points2 /= s2
U, S, Vt = np.linalg.svd(points1.T * points2)
R = (U * Vt).T
return np.vstack(
[
np.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)),
np.matrix([0.0, 0.0, 1.0]),
]
)
@st.cache_data(show_spinner=False, persist=True)
def load_video(file, device: str):
video_name = file.split(".")[0]
# create the samples directory if it doesn't exist
if not os.path.exists(f"{video_name}_samples"):
os.makedirs(f"{video_name}_samples")
p = os.path.join(f"{video_name}_samples")
output = os.path.join(f"{video_name}_samples", "%04d.jpg")
cmd = "ffmpeg -hide_banner -loglevel error -i {} -qscale:v 2 -r 25 {}".format(
file, output
)
os.system(cmd)
files = os.listdir(p)
files = sorted(files, key=lambda x: int(os.path.splitext(x)[0]))
array = [cv2.imread(os.path.join(p, file)) for file in files]
array = list(filter(lambda im: not im is None, array))
fa = face_alignment.FaceAlignment(
face_alignment.LandmarksType._2D, flip_input=False, device=device
)
points = [fa.get_landmarks(I) for I in array]
front256 = get_position(256)
video = []
for point, scene in zip(points, array):
if point is not None:
shape = np.array(point[0])
shape = shape[17:]
M = transformation_from_points(np.matrix(shape), np.matrix(front256))
img = cv2.warpAffine(scene, M[:2], (256, 256))
(x, y) = front256[-20:].mean(0).astype(np.int32)
w = 160 // 2
img = img[y - w // 2 : y + w // 2, x - w : x + w, ...]
img = cv2.resize(img, (128, 64))
video.append(img)
video = np.stack(video, axis=0).astype(np.float32)
video = torch.FloatTensor(video.transpose(3, 0, 1, 2)) / 255.0
return video, p, files
def ctc_decode(y):
y = y.argmax(-1)
t = y.size(0)
result = []
for i in range(t + 1):
result.append(MyDataset.ctc_arr2txt(y[:i], start=1))
return result