Spaces:
Sleeping
Sleeping
import cv2 | |
from tensorflow.keras.models import load_model | |
import gradio as gr | |
import tensorflow as tf | |
import cv2 | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
# Load the trained model | |
model = load_model('/content/cat_classifier_model.h5') | |
# Function to predict whether an image contains a cat | |
def predict_cat(image_content): | |
# Convert image content to PIL Image | |
img = Image.open(BytesIO(image_content)) | |
img = img.convert('RGB') | |
img = img.resize((224, 224)) | |
img_array = np.array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = img_array / 255.0 # Rescale to values between 0 and 1 (same as during training) | |
prediction = model.predict(img_array) | |
if prediction[0][0] > 0.5: | |
return "not a tablet" | |
else: | |
return "is a tablet" | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=predict_cat, | |
inputs=gr.Image(type='file', label='Upload an image of a tablet'), | |
outputs='text' | |
) | |
# Launch the interface with share=True to create a public link | |
iface.launch(share=True) | |