Spaces:
Sleeping
Sleeping
import cv2 | |
from tensorflow.keras.models import load_model | |
import gradio as gr | |
import tensorflow as tf | |
import cv2 | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
# Load the trained model | |
model = load_model('cat_classifier_model.h5') | |
def predict_cat(image_pil): | |
img_resized = image_pil.resize((224, 224)) | |
img_array = np.array(img_resized) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = img_array / 255.0 | |
prediction = model.predict(img_array) | |
if prediction[0][0] > 0.5: | |
return "not a tablet" | |
else: | |
return "is a tablet" | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=predict_cat, | |
inputs=gr.Image(type='pil', label='Upload an image of a tablet'), | |
outputs='text' | |
) | |
# Launch the interface with share=True to create a public link | |
iface.launch(share=True) | |