Spaces:
Sleeping
Sleeping
File size: 6,261 Bytes
3477655 547518c 57594ac 547518c 57594ac 547518c 3477655 57594ac 547518c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
## Taken from https://github.com/microsoft/presidio/blob/main/docs/samples/python/flair_recognizer.py
import logging
from typing import Optional, List, Tuple, Set
from presidio_analyzer import (
RecognizerResult,
EntityRecognizer,
AnalysisExplanation,
)
from presidio_analyzer.nlp_engine import NlpArtifacts
from flair.data import Sentence
from flair.models import SequenceTagger
logger = logging.getLogger("presidio-analyzer")
class FlairRecognizer(EntityRecognizer):
"""
Wrapper for a flair model, if needed to be used within Presidio Analyzer.
:example:
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
>flair_recognizer = FlairRecognizer()
>registry = RecognizerRegistry()
>registry.add_recognizer(flair_recognizer)
>analyzer = AnalyzerEngine(registry=registry)
>results = analyzer.analyze(
> "My name is Christopher and I live in Irbid.",
> language="en",
> return_decision_process=True,
>)
>for result in results:
> print(result)
> print(result.analysis_explanation)
"""
ENTITIES = [
"LOCATION",
"PERSON",
"ORGANIZATION",
# "MISCELLANEOUS" # - There are no direct correlation with Presidio entities.
]
DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"
CHECK_LABEL_GROUPS = [
({"LOCATION"}, {"LOC", "LOCATION"}),
({"PERSON"}, {"PER", "PERSON"}),
({"ORGANIZATION"}, {"ORG"}),
# ({"MISCELLANEOUS"}, {"MISC"}), # Probably not PII
]
MODEL_LANGUAGES = {"en": "flair/ner-english-large"}
PRESIDIO_EQUIVALENCES = {
"PER": "PERSON",
"LOC": "LOCATION",
"ORG": "ORGANIZATION",
# 'MISC': 'MISCELLANEOUS' # - Probably not PII
}
def __init__(
self,
supported_language: str = "en",
supported_entities: Optional[List[str]] = None,
check_label_groups: Optional[Tuple[Set, Set]] = None,
model: SequenceTagger = None,
model_path: Optional[str] = None,
):
self.check_label_groups = (
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
)
supported_entities = supported_entities if supported_entities else self.ENTITIES
if model and model_path:
raise ValueError("Only one of model or model_path should be provided.")
elif model and not model_path:
self.model = model
elif not model and model_path:
print(f"Loading model from {model_path}")
self.model = SequenceTagger.load(model_path)
else:
print(f"Loading model for language {supported_language}")
self.model = SequenceTagger.load(
self.MODEL_LANGUAGES.get(supported_language)
)
super().__init__(
supported_entities=supported_entities,
supported_language=supported_language,
name="Flair Analytics",
)
def load(self) -> None:
"""Load the model, not used. Model is loaded during initialization."""
pass
def get_supported_entities(self) -> List[str]:
"""
Return supported entities by this model.
:return: List of the supported entities.
"""
return self.supported_entities
# Class to use Flair with Presidio as an external recognizer.
def analyze(
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
) -> List[RecognizerResult]:
"""
Analyze text using Text Analytics.
:param text: The text for analysis.
:param entities: Not working properly for this recognizer.
:param nlp_artifacts: Not used by this recognizer.
:param language: Text language. Supported languages in MODEL_LANGUAGES
:return: The list of Presidio RecognizerResult constructed from the recognized
Flair detections.
"""
results = []
sentences = Sentence(text)
self.model.predict(sentences)
# If there are no specific list of entities, we will look for all of it.
if not entities:
entities = self.supported_entities
for entity in entities:
if entity not in self.supported_entities:
continue
for ent in sentences.get_spans("ner"):
if not self.__check_label(
entity, ent.labels[0].value, self.check_label_groups
):
continue
textual_explanation = self.DEFAULT_EXPLANATION.format(
ent.labels[0].value
)
explanation = self.build_flair_explanation(
round(ent.score, 2), textual_explanation
)
flair_result = self._convert_to_recognizer_result(ent, explanation)
results.append(flair_result)
return results
def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:
entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
flair_score = round(entity.score, 2)
flair_results = RecognizerResult(
entity_type=entity_type,
start=entity.start_position,
end=entity.end_position,
score=flair_score,
analysis_explanation=explanation,
)
return flair_results
def build_flair_explanation(
self, original_score: float, explanation: str
) -> AnalysisExplanation:
"""
Create explanation for why this result was detected.
:param original_score: Score given by this recognizer
:param explanation: Explanation string
:return:
"""
explanation = AnalysisExplanation(
recognizer=self.__class__.__name__,
original_score=original_score,
textual_explanation=explanation,
)
return explanation
@staticmethod
def __check_label(
entity: str, label: str, check_label_groups: Tuple[Set, Set]
) -> bool:
return any(
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
)
|