Spaces:
Sleeping
Sleeping
import logging | |
from typing import Tuple | |
import spacy | |
from presidio_analyzer import RecognizerRegistry | |
from presidio_analyzer.nlp_engine import ( | |
NlpEngine, | |
NlpEngineProvider, | |
) | |
logger = logging.getLogger("presidio-streamlit") | |
def create_nlp_engine_with_spacy( | |
model_path: str, | |
) -> Tuple[NlpEngine, RecognizerRegistry]: | |
""" | |
Instantiate an NlpEngine with a spaCy model | |
:param model_path: path to model / model name. | |
""" | |
nlp_configuration = { | |
"nlp_engine_name": "spacy", | |
"models": [{"lang_code": "en", "model_name": model_path}], | |
"ner_model_configuration": { | |
"model_to_presidio_entity_mapping": { | |
"PER": "PERSON", | |
"PERSON": "PERSON", | |
"NORP": "NRP", | |
"FAC": "FACILITY", | |
"LOC": "LOCATION", | |
"GPE": "LOCATION", | |
"LOCATION": "LOCATION", | |
"ORG": "ORGANIZATION", | |
"ORGANIZATION": "ORGANIZATION", | |
"DATE": "DATE_TIME", | |
"TIME": "DATE_TIME", | |
}, | |
"low_confidence_score_multiplier": 0.4, | |
"low_score_entity_names": ["ORG", "ORGANIZATION"], | |
}, | |
} | |
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
registry = RecognizerRegistry() | |
registry.load_predefined_recognizers(nlp_engine=nlp_engine) | |
return nlp_engine, registry | |
def create_nlp_engine_with_stanza( | |
model_path: str, | |
) -> Tuple[NlpEngine, RecognizerRegistry]: | |
""" | |
Instantiate an NlpEngine with a stanza model | |
:param model_path: path to model / model name. | |
""" | |
nlp_configuration = { | |
"nlp_engine_name": "stanza", | |
"models": [{"lang_code": "en", "model_name": model_path}], | |
"ner_model_configuration": { | |
"model_to_presidio_entity_mapping": { | |
"PER": "PERSON", | |
"PERSON": "PERSON", | |
"NORP": "NRP", | |
"FAC": "FACILITY", | |
"LOC": "LOCATION", | |
"GPE": "LOCATION", | |
"LOCATION": "LOCATION", | |
"ORG": "ORGANIZATION", | |
"ORGANIZATION": "ORGANIZATION", | |
"DATE": "DATE_TIME", | |
"TIME": "DATE_TIME", | |
} | |
}, | |
} | |
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
registry = RecognizerRegistry() | |
registry.load_predefined_recognizers(nlp_engine=nlp_engine) | |
return nlp_engine, registry | |
def create_nlp_engine_with_transformers( | |
model_path: str, | |
) -> Tuple[NlpEngine, RecognizerRegistry]: | |
""" | |
Instantiate an NlpEngine with a TransformersRecognizer and a small spaCy model. | |
The TransformersRecognizer would return results from Transformers models, the spaCy model | |
would return NlpArtifacts such as POS and lemmas. | |
:param model_path: HuggingFace model path. | |
""" | |
print(f"Loading Transformers model: {model_path} of type {type(model_path)}") | |
nlp_configuration = { | |
"nlp_engine_name": "transformers", | |
"models": [ | |
{ | |
"lang_code": "en", | |
"model_name": {"spacy": "en_core_web_sm", "transformers": model_path}, | |
} | |
], | |
"ner_model_configuration": { | |
"model_to_presidio_entity_mapping": { | |
"PER": "PERSON", | |
"PERSON": "PERSON", | |
"LOC": "LOCATION", | |
"LOCATION": "LOCATION", | |
"GPE": "LOCATION", | |
"ORG": "ORGANIZATION", | |
"ORGANIZATION": "ORGANIZATION", | |
"NORP": "NRP", | |
"AGE": "AGE", | |
"ID": "ID", | |
"EMAIL": "EMAIL", | |
"PATIENT": "PERSON", | |
"STAFF": "PERSON", | |
"HOSP": "ORGANIZATION", | |
"PATORG": "ORGANIZATION", | |
"DATE": "DATE_TIME", | |
"TIME": "DATE_TIME", | |
"PHONE": "PHONE_NUMBER", | |
"HCW": "PERSON", | |
"HOSPITAL": "ORGANIZATION", | |
"FACILITY": "LOCATION", | |
}, | |
"low_confidence_score_multiplier": 0.4, | |
"low_score_entity_names": ["ID"], | |
"labels_to_ignore": [ | |
"CARDINAL", | |
"EVENT", | |
"LANGUAGE", | |
"LAW", | |
"MONEY", | |
"ORDINAL", | |
"PERCENT", | |
"PRODUCT", | |
"QUANTITY", | |
"WORK_OF_ART", | |
], | |
}, | |
} | |
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
registry = RecognizerRegistry() | |
registry.load_predefined_recognizers(nlp_engine=nlp_engine) | |
return nlp_engine, registry | |
def create_nlp_engine_with_flair( | |
model_path: str, | |
) -> Tuple[NlpEngine, RecognizerRegistry]: | |
""" | |
Instantiate an NlpEngine with a FlairRecognizer and a small spaCy model. | |
The FlairRecognizer would return results from Flair models, the spaCy model | |
would return NlpArtifacts such as POS and lemmas. | |
:param model_path: Flair model path. | |
""" | |
from flair_recognizer import FlairRecognizer | |
registry = RecognizerRegistry() | |
registry.load_predefined_recognizers() | |
# there is no official Flair NlpEngine, hence we load it as an additional recognizer | |
if not spacy.util.is_package("en_core_web_sm"): | |
spacy.cli.download("en_core_web_sm") | |
# Using a small spaCy model + a Flair NER model | |
flair_recognizer = FlairRecognizer(model_path=model_path) | |
nlp_configuration = { | |
"nlp_engine_name": "spacy", | |
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}], | |
} | |
registry.add_recognizer(flair_recognizer) | |
registry.remove_recognizer("SpacyRecognizer") | |
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
return nlp_engine, registry | |
def create_nlp_engine_with_azure_ai_language(ta_key: str, ta_endpoint: str): | |
""" | |
Instantiate an NlpEngine with a TextAnalyticsWrapper and a small spaCy model. | |
The TextAnalyticsWrapper would return results from calling Azure Text Analytics PII, the spaCy model | |
would return NlpArtifacts such as POS and lemmas. | |
:param ta_key: Azure Text Analytics key. | |
:param ta_endpoint: Azure Text Analytics endpoint. | |
""" | |
from azure_ai_language_wrapper import AzureAIServiceWrapper | |
if not ta_key or not ta_endpoint: | |
raise RuntimeError("Please fill in the Text Analytics endpoint details") | |
registry = RecognizerRegistry() | |
registry.load_predefined_recognizers() | |
azure_ai_language_recognizer = AzureAIServiceWrapper( | |
ta_endpoint=ta_endpoint, ta_key=ta_key | |
) | |
nlp_configuration = { | |
"nlp_engine_name": "spacy", | |
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}], | |
} | |
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
registry.add_recognizer(azure_ai_language_recognizer) | |
registry.remove_recognizer("SpacyRecognizer") | |
return nlp_engine, registry | |