Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- demo_text.txt +12 -0
- index.md +22 -0
- presidio_streamlit.py +293 -0
- requirements.txt +8 -0
- transformers_rec/__init__.py +5 -0
- transformers_rec/configuration.py +116 -0
- transformers_rec/transformers_recognizer.py +324 -0
demo_text.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Here are a few examples sentences we currently support:
|
2 |
+
|
3 |
+
Hello, my name is David Johnson and I live in Maine.
|
4 |
+
My credit card number is 4095-2609-9393-4932 and my crypto wallet id is 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ.
|
5 |
+
|
6 |
+
On September 18 I visited microsoft.com and sent an email to [email protected], from the IP 192.168.0.1.
|
7 |
+
|
8 |
+
My passport: 191280342 and my phone number: (212) 555-1234.
|
9 |
+
|
10 |
+
This is a valid International Bank Account Number: IL150120690000003111111 . Can you please check the status on bank account 954567876544?
|
11 |
+
|
12 |
+
Kate's social security number is 078-05-1126. Her driver license? it is 1234567A.
|
index.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Simple demo website for Presidio
|
2 |
+
Here's a simple app, written in pure Python, to create a demo website for Presidio.
|
3 |
+
The app is based on the [streamlit](https://streamlit.io/) package.
|
4 |
+
|
5 |
+
## Requirements
|
6 |
+
1. Install dependencies (preferably in a virtual environment)
|
7 |
+
|
8 |
+
```sh
|
9 |
+
pip install streamlit pandas presidio-analyzer presidio-anonymizer
|
10 |
+
```
|
11 |
+
|
12 |
+
2. Download the [presidio_streamlit.py](presidio_streamlit.py) file.
|
13 |
+
3. *Optional*: Update the `analyzer_engine` and `anonymizer_engine` functions for your specific implementation
|
14 |
+
3. Start the app:
|
15 |
+
|
16 |
+
```sh
|
17 |
+
streamlit run presidio_streamlit.py
|
18 |
+
```
|
19 |
+
|
20 |
+
## Output
|
21 |
+
Output should be similar to this screenshot:
|
22 |
+
![image](https://user-images.githubusercontent.com/3776619/120109161-efe21080-c170-11eb-8a29-9eaf71e722ee.png)
|
presidio_streamlit.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Streamlit app for Presidio."""
|
2 |
+
|
3 |
+
from json import JSONEncoder
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import spacy
|
8 |
+
import streamlit as st
|
9 |
+
from annotated_text import annotated_text
|
10 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry
|
11 |
+
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
12 |
+
from presidio_anonymizer import AnonymizerEngine
|
13 |
+
from presidio_anonymizer.entities import OperatorConfig
|
14 |
+
|
15 |
+
from transformers_rec import (
|
16 |
+
STANFORD_COFIGURATION,
|
17 |
+
TransformersRecognizer,
|
18 |
+
BERT_DEID_CONFIGURATION,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
# Helper methods
|
23 |
+
@st.cache_resource
|
24 |
+
def analyzer_engine(model_path: str):
|
25 |
+
"""Return AnalyzerEngine.
|
26 |
+
|
27 |
+
:param model_path: Which model to use for NER:
|
28 |
+
"StanfordAIMI/stanford-deidentifier-base",
|
29 |
+
"obi/deid_roberta_i2b2",
|
30 |
+
"en_core_web_lg"
|
31 |
+
"""
|
32 |
+
|
33 |
+
registry = RecognizerRegistry()
|
34 |
+
registry.load_predefined_recognizers()
|
35 |
+
|
36 |
+
# Set up NLP Engine according to the model of choice
|
37 |
+
if model_path == "en_core_web_lg":
|
38 |
+
if not spacy.util.is_package("en_core_web_lg"):
|
39 |
+
spacy.cli.download("en_core_web_lg")
|
40 |
+
nlp_configuration = {
|
41 |
+
"nlp_engine_name": "spacy",
|
42 |
+
"models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
|
43 |
+
}
|
44 |
+
else:
|
45 |
+
if not spacy.util.is_package("en_core_web_sm"):
|
46 |
+
spacy.cli.download("en_core_web_sm")
|
47 |
+
# Using a small spaCy model + a HF NER model
|
48 |
+
transformers_recognizer = TransformersRecognizer(model_path=model_path)
|
49 |
+
|
50 |
+
if model_path == "StanfordAIMI/stanford-deidentifier-base":
|
51 |
+
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
|
52 |
+
elif model_path == "obi/deid_roberta_i2b2":
|
53 |
+
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
|
54 |
+
|
55 |
+
# Use small spaCy model, no need for both spacy and HF models
|
56 |
+
# The transformers model is used here as a recognizer, not as an NlpEngine
|
57 |
+
nlp_configuration = {
|
58 |
+
"nlp_engine_name": "spacy",
|
59 |
+
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
60 |
+
}
|
61 |
+
|
62 |
+
registry.add_recognizer(transformers_recognizer)
|
63 |
+
|
64 |
+
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
65 |
+
|
66 |
+
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
|
67 |
+
return analyzer
|
68 |
+
|
69 |
+
|
70 |
+
@st.cache_resource
|
71 |
+
def anonymizer_engine():
|
72 |
+
"""Return AnonymizerEngine."""
|
73 |
+
return AnonymizerEngine()
|
74 |
+
|
75 |
+
|
76 |
+
@st.cache_data
|
77 |
+
def get_supported_entities():
|
78 |
+
"""Return supported entities from the Analyzer Engine."""
|
79 |
+
return analyzer_engine(st_model).get_supported_entities()
|
80 |
+
|
81 |
+
|
82 |
+
@st.cache_data
|
83 |
+
def analyze(**kwargs):
|
84 |
+
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
|
85 |
+
if "entities" not in kwargs or "All" in kwargs["entities"]:
|
86 |
+
kwargs["entities"] = None
|
87 |
+
return analyzer_engine(st_model).analyze(**kwargs)
|
88 |
+
|
89 |
+
|
90 |
+
def anonymize(text: str, analyze_results: List[RecognizerResult]):
|
91 |
+
"""Anonymize identified input using Presidio Anonymizer.
|
92 |
+
|
93 |
+
:param text: Full text
|
94 |
+
:param analyze_results: list of results from presidio analyzer engine
|
95 |
+
"""
|
96 |
+
|
97 |
+
if st_operator == "mask":
|
98 |
+
operator_config = {
|
99 |
+
"type": "mask",
|
100 |
+
"masking_char": st_mask_char,
|
101 |
+
"chars_to_mask": st_number_of_chars,
|
102 |
+
"from_end": False,
|
103 |
+
}
|
104 |
+
|
105 |
+
elif st_operator == "encrypt":
|
106 |
+
operator_config = {"key": st_encrypt_key}
|
107 |
+
elif st_operator == "highlight":
|
108 |
+
operator_config = {"lambda": lambda x: x}
|
109 |
+
else:
|
110 |
+
operator_config = None
|
111 |
+
|
112 |
+
if st_operator == "highlight":
|
113 |
+
operator = "custom"
|
114 |
+
else:
|
115 |
+
operator = st_operator
|
116 |
+
|
117 |
+
res = anonymizer_engine().anonymize(
|
118 |
+
text,
|
119 |
+
analyze_results,
|
120 |
+
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
|
121 |
+
)
|
122 |
+
return res
|
123 |
+
|
124 |
+
|
125 |
+
def annotate(text: str, analyze_results: List[RecognizerResult]):
|
126 |
+
"""
|
127 |
+
Highlights every identified entity on top of the text.
|
128 |
+
:param text: full text
|
129 |
+
:param analyze_results: list of analyzer results.
|
130 |
+
"""
|
131 |
+
tokens = []
|
132 |
+
|
133 |
+
# Use the anonymizer to resolve overlaps
|
134 |
+
results = anonymize(text, analyze_results)
|
135 |
+
|
136 |
+
# sort by start index
|
137 |
+
results = sorted(results.items, key=lambda x: x.start)
|
138 |
+
for i, res in enumerate(results):
|
139 |
+
if i == 0:
|
140 |
+
tokens.append(text[: res.start])
|
141 |
+
|
142 |
+
# append entity text and entity type
|
143 |
+
tokens.append((text[res.start: res.end], res.entity_type))
|
144 |
+
|
145 |
+
# if another entity coming i.e. we're not at the last results element, add text up to next entity
|
146 |
+
if i != len(results) - 1:
|
147 |
+
tokens.append(text[res.end: results[i + 1].start])
|
148 |
+
# if no more entities coming, add all remaining text
|
149 |
+
else:
|
150 |
+
tokens.append(text[res.end:])
|
151 |
+
return tokens
|
152 |
+
|
153 |
+
|
154 |
+
st.set_page_config(page_title="Presidio demo", layout="wide")
|
155 |
+
|
156 |
+
# Sidebar
|
157 |
+
st.sidebar.header(
|
158 |
+
"""
|
159 |
+
PII De-Identification with Microsoft Presidio
|
160 |
+
"""
|
161 |
+
)
|
162 |
+
|
163 |
+
st.sidebar.info(
|
164 |
+
"Presidio is an open source customizable framework for PII detection and de-identification\n"
|
165 |
+
"[Code](https://aka.ms/presidio) | "
|
166 |
+
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
|
167 |
+
"[Installation](https://microsoft.github.io/presidio/installation/) | "
|
168 |
+
"[FAQ](https://microsoft.github.io/presidio/faq/)",
|
169 |
+
icon="ℹ️",
|
170 |
+
)
|
171 |
+
|
172 |
+
st.sidebar.markdown(
|
173 |
+
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)"
|
174 |
+
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)"
|
175 |
+
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
|
176 |
+
)
|
177 |
+
|
178 |
+
st_model = st.sidebar.selectbox(
|
179 |
+
"NER model",
|
180 |
+
[
|
181 |
+
"StanfordAIMI/stanford-deidentifier-base",
|
182 |
+
"obi/deid_roberta_i2b2",
|
183 |
+
"en_core_web_lg",
|
184 |
+
],
|
185 |
+
index=1,
|
186 |
+
)
|
187 |
+
st.sidebar.markdown("> Note: Models might take some time to download. ")
|
188 |
+
|
189 |
+
st_operator = st.sidebar.selectbox(
|
190 |
+
"De-identification approach",
|
191 |
+
["redact", "replace", "mask", "hash", "encrypt", "highlight"],
|
192 |
+
index=1,
|
193 |
+
)
|
194 |
+
|
195 |
+
if st_operator == "mask":
|
196 |
+
st_number_of_chars = st.sidebar.number_input(
|
197 |
+
"number of chars", value=15, min_value=0, max_value=100
|
198 |
+
)
|
199 |
+
st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
|
200 |
+
elif st_operator == "encrypt":
|
201 |
+
st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")
|
202 |
+
|
203 |
+
st_threshold = st.sidebar.slider(
|
204 |
+
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
|
205 |
+
)
|
206 |
+
|
207 |
+
st_return_decision_process = st.sidebar.checkbox(
|
208 |
+
"Add analysis explanations to findings", value=False
|
209 |
+
)
|
210 |
+
|
211 |
+
st_entities = st.sidebar.multiselect(
|
212 |
+
label="Which entities to look for?",
|
213 |
+
options=get_supported_entities(),
|
214 |
+
default=list(get_supported_entities()),
|
215 |
+
)
|
216 |
+
|
217 |
+
# Main panel
|
218 |
+
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
219 |
+
engine = analyzer_engine(model_path=st_model)
|
220 |
+
analyzer_load_state.empty()
|
221 |
+
|
222 |
+
# Read default text
|
223 |
+
with open("demo_text.txt") as f:
|
224 |
+
demo_text = f.readlines()
|
225 |
+
|
226 |
+
# Create two columns for before and after
|
227 |
+
col1, col2 = st.columns(2)
|
228 |
+
|
229 |
+
# Before:
|
230 |
+
col1.subheader("Input string:")
|
231 |
+
st_text = col1.text_area(
|
232 |
+
label="Enter text",
|
233 |
+
value="".join(demo_text),
|
234 |
+
height=400,
|
235 |
+
)
|
236 |
+
|
237 |
+
st_analyze_results = analyze(
|
238 |
+
text=st_text,
|
239 |
+
entities=st_entities,
|
240 |
+
language="en",
|
241 |
+
score_threshold=st_threshold,
|
242 |
+
return_decision_process=st_return_decision_process,
|
243 |
+
)
|
244 |
+
|
245 |
+
# After
|
246 |
+
if st_operator != "highlight":
|
247 |
+
with col2:
|
248 |
+
st.subheader(f"Output")
|
249 |
+
st_anonymize_results = anonymize(st_text, st_analyze_results)
|
250 |
+
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
|
251 |
+
else:
|
252 |
+
st.subheader("Highlighted")
|
253 |
+
annotated_tokens = annotate(st_text, st_analyze_results)
|
254 |
+
# annotated_tokens
|
255 |
+
annotated_text(*annotated_tokens)
|
256 |
+
|
257 |
+
|
258 |
+
# json result
|
259 |
+
class ToDictEncoder(JSONEncoder):
|
260 |
+
"""Encode dict to json."""
|
261 |
+
|
262 |
+
def default(self, o):
|
263 |
+
"""Encode to JSON using to_dict."""
|
264 |
+
return o.to_dict()
|
265 |
+
|
266 |
+
|
267 |
+
# table result
|
268 |
+
st.subheader(
|
269 |
+
"Findings" if not st_return_decision_process else "Findings with decision factors"
|
270 |
+
)
|
271 |
+
if st_analyze_results:
|
272 |
+
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
|
273 |
+
df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]
|
274 |
+
|
275 |
+
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
|
276 |
+
{
|
277 |
+
"entity_type": "Entity type",
|
278 |
+
"text": "Text",
|
279 |
+
"start": "Start",
|
280 |
+
"end": "End",
|
281 |
+
"score": "Confidence",
|
282 |
+
},
|
283 |
+
axis=1,
|
284 |
+
)
|
285 |
+
df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
|
286 |
+
if st_return_decision_process:
|
287 |
+
analysis_explanation_df = pd.DataFrame.from_records(
|
288 |
+
[r.analysis_explanation.to_dict() for r in st_analyze_results]
|
289 |
+
)
|
290 |
+
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
|
291 |
+
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
|
292 |
+
else:
|
293 |
+
st.text("No findings")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
presidio-analyzer
|
2 |
+
presidio-anonymizer
|
3 |
+
streamlit
|
4 |
+
pandas
|
5 |
+
st-annotated-text
|
6 |
+
faker
|
7 |
+
torch
|
8 |
+
transformers
|
transformers_rec/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .configuration import BERT_DEID_CONFIGURATION, STANFORD_COFIGURATION
|
2 |
+
from .transformers_recognizer import TransformersRecognizer
|
3 |
+
|
4 |
+
__all__ = ["BERT_DEID_CONFIGURATION", "STANFORD_COFIGURATION", "TransformersRecognizer"]
|
5 |
+
|
transformers_rec/configuration.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
STANFORD_COFIGURATION = {
|
2 |
+
"DEFAULT_MODEL_PATH": "StanfordAIMI/stanford-deidentifier-base",
|
3 |
+
"PRESIDIO_SUPPORTED_ENTITIES": [
|
4 |
+
"LOCATION",
|
5 |
+
"PERSON",
|
6 |
+
"ORGANIZATION",
|
7 |
+
"AGE",
|
8 |
+
"PHONE_NUMBER",
|
9 |
+
"EMAIL",
|
10 |
+
"DATE_TIME",
|
11 |
+
"DEVICE",
|
12 |
+
"ZIP",
|
13 |
+
"PROFESSION",
|
14 |
+
"USERNAME"
|
15 |
+
|
16 |
+
],
|
17 |
+
"LABELS_TO_IGNORE": ["O"],
|
18 |
+
"DEFAULT_EXPLANATION": "Identified as {} by the StanfordAIMI/stanford-deidentifier-base NER model",
|
19 |
+
"SUB_WORD_AGGREGATION": "simple",
|
20 |
+
"DATASET_TO_PRESIDIO_MAPPING": {
|
21 |
+
"DATE": "DATE_TIME",
|
22 |
+
"DOCTOR": "PERSON",
|
23 |
+
"PATIENT": "PERSON",
|
24 |
+
"HOSPITAL": "LOCATION",
|
25 |
+
"MEDICALRECORD": "O",
|
26 |
+
"IDNUM": "O",
|
27 |
+
"ORGANIZATION": "ORGANIZATION",
|
28 |
+
"ZIP": "ZIP",
|
29 |
+
"PHONE": "PHONE_NUMBER",
|
30 |
+
"USERNAME": "USERNAME",
|
31 |
+
"STREET": "LOCATION",
|
32 |
+
"PROFESSION": "PROFESSION",
|
33 |
+
"COUNTRY": "LOCATION",
|
34 |
+
"LOCATION-OTHER": "LOCATION",
|
35 |
+
"FAX": "PHONE_NUMBER",
|
36 |
+
"EMAIL": "EMAIL",
|
37 |
+
"STATE": "LOCATION",
|
38 |
+
"DEVICE": "DEVICE",
|
39 |
+
"ORG": "ORGANIZATION",
|
40 |
+
"AGE": "AGE",
|
41 |
+
},
|
42 |
+
"MODEL_TO_PRESIDIO_MAPPING": {
|
43 |
+
"PER": "PERSON",
|
44 |
+
"PERSON": "PERSON",
|
45 |
+
"LOC": "LOCATION",
|
46 |
+
"ORG": "ORGANIZATION",
|
47 |
+
"AGE": "AGE",
|
48 |
+
"PATIENT": "PERSON",
|
49 |
+
"HCW": "PERSON",
|
50 |
+
"HOSPITAL": "LOCATION",
|
51 |
+
"PATORG": "ORGANIZATION",
|
52 |
+
"DATE": "DATE_TIME",
|
53 |
+
"PHONE": "PHONE_NUMBER",
|
54 |
+
"VENDOR": "ORGANIZATION",
|
55 |
+
},
|
56 |
+
"CHUNK_OVERLAP_SIZE": 40,
|
57 |
+
"CHUNK_SIZE": 600,
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
BERT_DEID_CONFIGURATION = {
|
62 |
+
"PRESIDIO_SUPPORTED_ENTITIES": [
|
63 |
+
"LOCATION",
|
64 |
+
"PERSON",
|
65 |
+
"ORGANIZATION",
|
66 |
+
"AGE",
|
67 |
+
"PHONE_NUMBER",
|
68 |
+
"EMAIL",
|
69 |
+
"DATE_TIME",
|
70 |
+
"ZIP",
|
71 |
+
"PROFESSION",
|
72 |
+
"USERNAME",
|
73 |
+
],
|
74 |
+
"DEFAULT_MODEL_PATH": "obi/deid_roberta_i2b2",
|
75 |
+
"LABELS_TO_IGNORE": ["O"],
|
76 |
+
"DEFAULT_EXPLANATION": "Identified as {} by the obi/deid_roberta_i2b2 NER model",
|
77 |
+
"SUB_WORD_AGGREGATION": "simple",
|
78 |
+
"DATASET_TO_PRESIDIO_MAPPING": {
|
79 |
+
"DATE": "DATE_TIME",
|
80 |
+
"DOCTOR": "PERSON",
|
81 |
+
"PATIENT": "PERSON",
|
82 |
+
"HOSPITAL": "ORGANIZATION",
|
83 |
+
"MEDICALRECORD": "O",
|
84 |
+
"IDNUM": "O",
|
85 |
+
"ORGANIZATION": "ORGANIZATION",
|
86 |
+
"ZIP": "O",
|
87 |
+
"PHONE": "PHONE_NUMBER",
|
88 |
+
"USERNAME": "",
|
89 |
+
"STREET": "LOCATION",
|
90 |
+
"PROFESSION": "PROFESSION",
|
91 |
+
"COUNTRY": "LOCATION",
|
92 |
+
"LOCATION-OTHER": "LOCATION",
|
93 |
+
"FAX": "PHONE_NUMBER",
|
94 |
+
"EMAIL": "EMAIL",
|
95 |
+
"STATE": "LOCATION",
|
96 |
+
"DEVICE": "O",
|
97 |
+
"ORG": "ORGANIZATION",
|
98 |
+
"AGE": "AGE",
|
99 |
+
},
|
100 |
+
"MODEL_TO_PRESIDIO_MAPPING": {
|
101 |
+
"PER": "PERSON",
|
102 |
+
"LOC": "LOCATION",
|
103 |
+
"ORG": "ORGANIZATION",
|
104 |
+
"AGE": "AGE",
|
105 |
+
"ID": "O",
|
106 |
+
"EMAIL": "EMAIL",
|
107 |
+
"PATIENT": "PERSON",
|
108 |
+
"STAFF": "PERSON",
|
109 |
+
"HOSP": "ORGANIZATION",
|
110 |
+
"PATORG": "ORGANIZATION",
|
111 |
+
"DATE": "DATE_TIME",
|
112 |
+
"PHONE": "PHONE_NUMBER",
|
113 |
+
},
|
114 |
+
"CHUNK_OVERLAP_SIZE": 40,
|
115 |
+
"CHUNK_SIZE": 600,
|
116 |
+
}
|
transformers_rec/transformers_recognizer.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import logging
|
3 |
+
from typing import Optional, List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from presidio_analyzer import (
|
7 |
+
RecognizerResult,
|
8 |
+
EntityRecognizer,
|
9 |
+
AnalysisExplanation,
|
10 |
+
)
|
11 |
+
from presidio_analyzer.nlp_engine import NlpArtifacts
|
12 |
+
|
13 |
+
from .configuration import BERT_DEID_CONFIGURATION
|
14 |
+
|
15 |
+
|
16 |
+
logger = logging.getLogger("presidio-analyzer")
|
17 |
+
|
18 |
+
try:
|
19 |
+
from transformers import (
|
20 |
+
AutoTokenizer,
|
21 |
+
AutoModelForTokenClassification,
|
22 |
+
pipeline,
|
23 |
+
TokenClassificationPipeline,
|
24 |
+
)
|
25 |
+
|
26 |
+
except ImportError:
|
27 |
+
logger.error("transformers_rec is not installed")
|
28 |
+
|
29 |
+
|
30 |
+
class TransformersRecognizer(EntityRecognizer):
|
31 |
+
"""
|
32 |
+
Wrapper for a transformers_rec model, if needed to be used within Presidio Analyzer.
|
33 |
+
The class loads models hosted on HuggingFace - https://huggingface.co/
|
34 |
+
and loads the model and tokenizer into a TokenClassification pipeline.
|
35 |
+
Samples are split into short text chunks, ideally shorter than max_length input_ids of the individual model,
|
36 |
+
to avoid truncation by the Tokenizer and loss of information
|
37 |
+
|
38 |
+
A configuration object should be maintained for each dataset-model combination and translate
|
39 |
+
entities names into a standardized view. A sample of a configuration file is attached in
|
40 |
+
the example.
|
41 |
+
:param supported_entities: List of entities to run inference on
|
42 |
+
:type supported_entities: Optional[List[str]]
|
43 |
+
:param pipeline: Instance of a TokenClassificationPipeline including a Tokenizer and a Model, defaults to None
|
44 |
+
:type pipeline: Optional[TokenClassificationPipeline], optional
|
45 |
+
:param model_path: string referencing a HuggingFace uploaded model to be used for Inference, defaults to None
|
46 |
+
:type model_path: Optional[str], optional
|
47 |
+
|
48 |
+
:example
|
49 |
+
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
50 |
+
>model_path = "obi/deid_roberta_i2b2"
|
51 |
+
>transformers_recognizer = TransformersRecognizer(model_path=model_path,
|
52 |
+
>supported_entities = model_configuration.get("PRESIDIO_SUPPORTED_ENTITIES"))
|
53 |
+
>transformers_recognizer.load_transformer(**model_configuration)
|
54 |
+
>registry = RecognizerRegistry()
|
55 |
+
>registry.add_recognizer(transformers_recognizer)
|
56 |
+
>analyzer = AnalyzerEngine(registry=registry)
|
57 |
+
>sample = "My name is Christopher and I live in Irbid."
|
58 |
+
>results = analyzer.analyze(sample, language="en",return_decision_process=True)
|
59 |
+
|
60 |
+
>for result in results:
|
61 |
+
> print(result,'----', sample[result.start:result.end])
|
62 |
+
"""
|
63 |
+
|
64 |
+
def load(self) -> None:
|
65 |
+
pass
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
model_path: Optional[str] = None,
|
70 |
+
pipeline: Optional[TokenClassificationPipeline] = None,
|
71 |
+
supported_entities: Optional[List[str]] = None,
|
72 |
+
):
|
73 |
+
if not supported_entities:
|
74 |
+
supported_entities = BERT_DEID_CONFIGURATION[
|
75 |
+
"PRESIDIO_SUPPORTED_ENTITIES"
|
76 |
+
]
|
77 |
+
super().__init__(
|
78 |
+
supported_entities=supported_entities,
|
79 |
+
name=f"Transformers model {model_path}",
|
80 |
+
)
|
81 |
+
|
82 |
+
self.model_path = model_path
|
83 |
+
self.pipeline = pipeline
|
84 |
+
self.is_loaded = False
|
85 |
+
|
86 |
+
self.aggregation_mechanism = None
|
87 |
+
self.ignore_labels = None
|
88 |
+
self.model_to_presidio_mapping = None
|
89 |
+
self.entity_mapping = None
|
90 |
+
self.default_explanation = None
|
91 |
+
self.text_overlap_length = None
|
92 |
+
self.chunk_length = None
|
93 |
+
|
94 |
+
def load_transformer(self, **kwargs) -> None:
|
95 |
+
"""Load external configuration parameters and set default values.
|
96 |
+
|
97 |
+
:param kwargs: define default values for class attributes and modify pipeline behavior
|
98 |
+
**DATASET_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from dataset format to Presidio format
|
99 |
+
**MODEL_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from chosen model format to Presidio format
|
100 |
+
**SUB_WORD_AGGREGATION(str) - define how to aggregate sub-word tokens into full words and spans as defined
|
101 |
+
in HuggingFace https://huggingface.co/transformers/v4.8.0/main_classes/pipelines.html#transformers.TokenClassificationPipeline # noqa
|
102 |
+
**CHUNK_OVERLAP_SIZE (int) - number of overlapping characters in each text chunk
|
103 |
+
when splitting a single text into multiple inferences
|
104 |
+
**CHUNK_SIZE (int) - number of characters in each chunk of text
|
105 |
+
**LABELS_TO_IGNORE (List(str)) - List of entities to skip evaluation. Defaults to ["O"]
|
106 |
+
**DEFAULT_EXPLANATION (str) - string format to use for prediction explanations
|
107 |
+
"""
|
108 |
+
|
109 |
+
self.entity_mapping = kwargs.get("DATASET_TO_PRESIDIO_MAPPING", {})
|
110 |
+
self.model_to_presidio_mapping = kwargs.get("MODEL_TO_PRESIDIO_MAPPING", {})
|
111 |
+
self.ignore_labels = kwargs.get("LABELS_TO_IGNORE", ["O"])
|
112 |
+
self.aggregation_mechanism = kwargs.get("SUB_WORD_AGGREGATION", "simple")
|
113 |
+
self.default_explanation = kwargs.get("DEFAULT_EXPLANATION", None)
|
114 |
+
self.text_overlap_length = kwargs.get("CHUNK_OVERLAP_SIZE", 40)
|
115 |
+
self.chunk_length = kwargs.get("CHUNK_SIZE", 600)
|
116 |
+
if not self.pipeline:
|
117 |
+
if not self.model_path:
|
118 |
+
self.model_path = "obi/deid_roberta_i2b2"
|
119 |
+
logger.warning(
|
120 |
+
f"Both 'model' and 'model_path' arguments are None. Using default model_path={self.model_path}"
|
121 |
+
)
|
122 |
+
|
123 |
+
self._load_pipeline()
|
124 |
+
|
125 |
+
def _load_pipeline(self) -> None:
|
126 |
+
"""Initialize NER transformers_rec pipeline using the model_path provided"""
|
127 |
+
|
128 |
+
logging.debug(f"Initializing NER pipeline using {self.model_path} path")
|
129 |
+
device = 0 if torch.cuda.is_available() else -1
|
130 |
+
self.pipeline = pipeline(
|
131 |
+
"ner",
|
132 |
+
model=AutoModelForTokenClassification.from_pretrained(self.model_path),
|
133 |
+
tokenizer=AutoTokenizer.from_pretrained(self.model_path),
|
134 |
+
# Will attempt to group sub-entities to word level
|
135 |
+
aggregation_strategy=self.aggregation_mechanism,
|
136 |
+
device=device,
|
137 |
+
framework="pt",
|
138 |
+
ignore_labels=self.ignore_labels,
|
139 |
+
)
|
140 |
+
|
141 |
+
self.is_loaded = True
|
142 |
+
|
143 |
+
def get_supported_entities(self) -> List[str]:
|
144 |
+
"""
|
145 |
+
Return supported entities by this model.
|
146 |
+
:return: List of the supported entities.
|
147 |
+
"""
|
148 |
+
return self.supported_entities
|
149 |
+
|
150 |
+
# Class to use transformers_rec with Presidio as an external recognizer.
|
151 |
+
def analyze(
|
152 |
+
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
|
153 |
+
) -> List[RecognizerResult]:
|
154 |
+
"""
|
155 |
+
Analyze text using transformers_rec model to produce NER tagging.
|
156 |
+
:param text : The text for analysis.
|
157 |
+
:param entities: Not working properly for this recognizer.
|
158 |
+
:param nlp_artifacts: Not used by this recognizer.
|
159 |
+
:return: The list of Presidio RecognizerResult constructed from the recognized
|
160 |
+
transformers_rec detections.
|
161 |
+
"""
|
162 |
+
|
163 |
+
results = list()
|
164 |
+
# Run transformer model on the provided text
|
165 |
+
ner_results = self._get_ner_results_for_text(text)
|
166 |
+
|
167 |
+
for res in ner_results:
|
168 |
+
entity = self.model_to_presidio_mapping.get(res["entity_group"], None)
|
169 |
+
if not entity:
|
170 |
+
continue
|
171 |
+
|
172 |
+
res["entity_group"] = self.__check_label_transformer(res["entity_group"])
|
173 |
+
textual_explanation = self.default_explanation.format(res["entity_group"])
|
174 |
+
explanation = self.build_transformers_explanation(
|
175 |
+
float(round(res["score"], 2)), textual_explanation, res["word"]
|
176 |
+
)
|
177 |
+
transformers_result = self._convert_to_recognizer_result(res, explanation)
|
178 |
+
|
179 |
+
results.append(transformers_result)
|
180 |
+
|
181 |
+
return results
|
182 |
+
|
183 |
+
@staticmethod
|
184 |
+
def split_text_to_word_chunks(
|
185 |
+
input_length: int, chunk_length: int, overlap_length: int
|
186 |
+
) -> List[List]:
|
187 |
+
"""The function calculates chunks of text with size chunk_length. Each chunk has overlap_length number of
|
188 |
+
words to create context and continuity for the model
|
189 |
+
|
190 |
+
:param input_length: Length of input_ids for a given text
|
191 |
+
:type input_length: int
|
192 |
+
:param chunk_length: Length of each chunk of input_ids.
|
193 |
+
Should match the max input length of the transformer model
|
194 |
+
:type chunk_length: int
|
195 |
+
:param overlap_length: Number of overlapping words in each chunk
|
196 |
+
:type overlap_length: int
|
197 |
+
:return: List of start and end positions for individual text chunks
|
198 |
+
:rtype: List[List]
|
199 |
+
"""
|
200 |
+
if input_length < chunk_length:
|
201 |
+
return [[0, input_length]]
|
202 |
+
if chunk_length <= overlap_length:
|
203 |
+
logger.warning(
|
204 |
+
"overlap_length should be shorter than chunk_length, setting overlap_length to by half of chunk_length"
|
205 |
+
)
|
206 |
+
overlap_length = chunk_length // 2
|
207 |
+
return [
|
208 |
+
[i, min([i + chunk_length, input_length])]
|
209 |
+
for i in range(
|
210 |
+
0, input_length - overlap_length, chunk_length - overlap_length
|
211 |
+
)
|
212 |
+
]
|
213 |
+
|
214 |
+
def _get_ner_results_for_text(self, text: str) -> List[dict]:
|
215 |
+
"""The function runs model inference on the provided text.
|
216 |
+
The text is split into chunks with n overlapping characters.
|
217 |
+
The results are then aggregated and duplications are removed.
|
218 |
+
|
219 |
+
:param text: The text to run inference on
|
220 |
+
:type text: str
|
221 |
+
:return: List of entity predictions on the word level
|
222 |
+
:rtype: List[dict]
|
223 |
+
"""
|
224 |
+
model_max_length = self.pipeline.tokenizer.model_max_length
|
225 |
+
# calculate inputs based on the text
|
226 |
+
text_length = len(text)
|
227 |
+
# split text into chunks
|
228 |
+
logger.info(
|
229 |
+
f"splitting the text into chunks, length {text_length} > {model_max_length*2}"
|
230 |
+
)
|
231 |
+
predictions = list()
|
232 |
+
chunk_indexes = TransformersRecognizer.split_text_to_word_chunks(
|
233 |
+
text_length, self.chunk_length, self.text_overlap_length
|
234 |
+
)
|
235 |
+
|
236 |
+
# iterate over text chunks and run inference
|
237 |
+
for chunk_start, chunk_end in chunk_indexes:
|
238 |
+
chunk_text = text[chunk_start:chunk_end]
|
239 |
+
chunk_preds = self.pipeline(chunk_text)
|
240 |
+
|
241 |
+
# align indexes to match the original text - add to each position the value of chunk_start
|
242 |
+
aligned_predictions = list()
|
243 |
+
for prediction in chunk_preds:
|
244 |
+
prediction_tmp = copy.deepcopy(prediction)
|
245 |
+
prediction_tmp["start"] += chunk_start
|
246 |
+
prediction_tmp["end"] += chunk_start
|
247 |
+
aligned_predictions.append(prediction_tmp)
|
248 |
+
|
249 |
+
predictions.extend(aligned_predictions)
|
250 |
+
|
251 |
+
# remove duplicates
|
252 |
+
predictions = [dict(t) for t in {tuple(d.items()) for d in predictions}]
|
253 |
+
return predictions
|
254 |
+
|
255 |
+
@staticmethod
|
256 |
+
def _convert_to_recognizer_result(
|
257 |
+
prediction_result: dict, explanation: AnalysisExplanation
|
258 |
+
) -> RecognizerResult:
|
259 |
+
"""The method parses NER model predictions into a RecognizerResult format to enable down the stream analysis
|
260 |
+
|
261 |
+
:param prediction_result: A single example of entity prediction
|
262 |
+
:type prediction_result: dict
|
263 |
+
:param explanation: Textual representation of model prediction
|
264 |
+
:type explanation: str
|
265 |
+
:return: An instance of RecognizerResult which is used to model evaluation calculations
|
266 |
+
:rtype: RecognizerResult
|
267 |
+
"""
|
268 |
+
|
269 |
+
transformers_results = RecognizerResult(
|
270 |
+
entity_type=prediction_result["entity_group"],
|
271 |
+
start=prediction_result["start"],
|
272 |
+
end=prediction_result["end"],
|
273 |
+
score=float(round(prediction_result["score"], 2)),
|
274 |
+
analysis_explanation=explanation,
|
275 |
+
)
|
276 |
+
|
277 |
+
return transformers_results
|
278 |
+
|
279 |
+
def build_transformers_explanation(
|
280 |
+
self,
|
281 |
+
original_score: float,
|
282 |
+
explanation: str,
|
283 |
+
pattern: str,
|
284 |
+
) -> AnalysisExplanation:
|
285 |
+
"""
|
286 |
+
Create explanation for why this result was detected.
|
287 |
+
:param original_score: Score given by this recognizer
|
288 |
+
:param explanation: Explanation string
|
289 |
+
:param pattern: Regex pattern used
|
290 |
+
:return Structured explanation and scores of a NER model prediction
|
291 |
+
:rtype: AnalysisExplanation
|
292 |
+
"""
|
293 |
+
explanation = AnalysisExplanation(
|
294 |
+
recognizer=self.__class__.__name__,
|
295 |
+
original_score=float(original_score),
|
296 |
+
textual_explanation=explanation,
|
297 |
+
pattern=pattern,
|
298 |
+
)
|
299 |
+
return explanation
|
300 |
+
|
301 |
+
def __check_label_transformer(self, label: str) -> str:
|
302 |
+
"""The function validates the predicted label is identified by Presidio
|
303 |
+
and maps the string into a Presidio representation
|
304 |
+
:param label: Predicted label by the model
|
305 |
+
:type label: str
|
306 |
+
:return: Returns the predicted entity if the label is found in model_to_presidio mapping dictionary
|
307 |
+
and is supported by Presidio entities
|
308 |
+
:rtype: str
|
309 |
+
"""
|
310 |
+
|
311 |
+
if label == "O":
|
312 |
+
return label
|
313 |
+
|
314 |
+
# convert model label to presidio label
|
315 |
+
entity = self.model_to_presidio_mapping.get(label, None)
|
316 |
+
|
317 |
+
if entity is None:
|
318 |
+
logger.warning(f"Found unrecognized label {label}, returning entity as 'O'")
|
319 |
+
return "O"
|
320 |
+
|
321 |
+
if entity not in self.supported_entities:
|
322 |
+
logger.warning(f"Found entity {entity} which is not supported by Presidio")
|
323 |
+
return "O"
|
324 |
+
return entity
|