Spaces:
wssb
/
Runtime error

File size: 8,929 Bytes
d2a06b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin


@dataclass
class KarrasVeOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Derivate of predicted original image sample (x_0).
    """

    prev_sample: torch.FloatTensor
    derivative: torch.FloatTensor


class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
    the VE column of Table 1 from [1] for reference.

    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
    differential equations." https://arxiv.org/abs/2011.13456

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
    [`~ConfigMixin.from_config`] functios.

    For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
    Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
    optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.

    Args:
        sigma_min (`float`): minimum noise magnitude
        sigma_max (`float`): maximum noise magnitude
        s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
            A reasonable range is [1.000, 1.011].
        s_churn (`float`): the parameter controlling the overall amount of stochasticity.
            A reasonable range is [0, 100].
        s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
            A reasonable range is [0, 10].
        s_max (`float`): the end value of the sigma range where we add noise.
            A reasonable range is [0.2, 80].
        tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays.

    """

    @register_to_config
    def __init__(
        self,
        sigma_min: float = 0.02,
        sigma_max: float = 100,
        s_noise: float = 1.007,
        s_churn: float = 80,
        s_min: float = 0.05,
        s_max: float = 50,
        tensor_format: str = "pt",
    ):
        # setable values
        self.num_inference_steps = None
        self.timesteps = None
        self.schedule = None  # sigma(t_i)

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)

    def set_timesteps(self, num_inference_steps: int):
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.

        """
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.schedule = [
            (self.sigma_max * (self.sigma_min**2 / self.sigma_max**2) ** (i / (num_inference_steps - 1)))
            for i in self.timesteps
        ]
        self.schedule = np.array(self.schedule, dtype=np.float32)

        self.set_format(tensor_format=self.tensor_format)

    def add_noise_to_input(
        self, sample: Union[torch.FloatTensor, np.ndarray], sigma: float, generator: Optional[torch.Generator] = None
    ) -> Tuple[Union[torch.FloatTensor, np.ndarray], float]:
        """
        Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
        higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.

        TODO Args:
        """
        if self.s_min <= sigma <= self.s_max:
            gamma = min(self.s_churn / self.num_inference_steps, 2**0.5 - 1)
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
        eps = self.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
            sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

            KarrasVeOutput: updated sample in the diffusion chain and derivative (TODO double check).
        Returns:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] or `tuple`:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.

        """

        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

        if not return_dict:
            return (sample_prev, derivative)

        return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative)

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
        sample_prev: Union[torch.FloatTensor, np.ndarray],
        derivative: Union[torch.FloatTensor, np.ndarray],
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
        """
        Correct the predicted sample based on the output model_output of the network. TODO complete description

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
            sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO
            sample_prev (`torch.FloatTensor` or `np.ndarray`): TODO
            derivative (`torch.FloatTensor` or `np.ndarray`): TODO
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
            prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO

        """
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)

        if not return_dict:
            return (sample_prev, derivative)

        return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative)

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()